Abstract
Migration automaton models are introduced which offer the possibility to directly analyse essential selforganization properties of biological pattern formation at the cellular level. We present examples of migration automata as models of collective motion and cellular aggregation—patterns that are typical for example in the life cycle of Myxobacteria. Linear stability analysis of the corresponding automaton Boltzmann equation allows to distinguish orientation-dependent (collective motion) and density-dependent (aggregation) instabilities.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alt W, Deutsch A and Dunn G (eds) 1997Dynamics of cell and tissue motion (Basel: BirkhÄuser)
Aristotle 1992De Partibus Animalium I and De Generatione Animalium I (with passages from Book II. 1-3). Edited and translated with notes by D MBalme (London: Oxford University Press)
Bussemaker H, Deutsch A and Geigant E 1997 Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion;Phys. Rev. Lett. 78 5018–5021
D’Arcy W Thompson 1917On growth and form (Cambridge: Cambridge University Press)
Deutsch A 1996 Orientation-induced pattern formation: swarm dynamics in a lattice-gas automaton model:Int. J. Bifurc. Chaos 6 1735–1752
Deutsch A 1999 A new mechanism of aggregation in a lattice-gas cellular automaton model;Math. Comp. Mod. (in press)
Deutsch A and Lawniczak A 1999 Probabilistic lattice models of collective motion and aggregation; from individual to collective dynamics;Math. Biosci. (in press)
Driesch H 1891 Entwicklungsmechanische Studien I. Der Wert der beiden ersten Furchungszellen in der Echinodermenentwickelung. Experimentelle Erzeugung von Teil- und Doppelbildungen;Ztschr. f. wiss. Zool. 53
Dworkin M and Kaiser D (eds) 1993Myxobacteria II (Washington: American Society for Microbiology)
Ermentrout B and Edelstein-Keshet L 1993 Cellular automata approaches to biological modeling;J. Theor. Biol. 160 97–133
Frisch U, Hasslacher B and Pomeau Y 1986 Lattice-gas automata for the Navier-Stokes equation;Phys. Rev. Lett. 56 1505–1508
Lawniczak A, Dab D, Kapral R and Boon J P 1991 Reactive lattice gas automata;Physica D47 132
Neumann J v 1996Theory of self-reproducing automata (Urbana: University of Illinois Press)
Nicolis G and Prigogine I 1977Self-organization in nonequilibrium systems (New York: Wiley)
Pfistner B 1990 A one-dimensional model for the swarming behaviour of myxobacteria; inBiological motion (eds) WAlt and GHoffmann (Heidelberg, Berlin, New York: Springer-Verlag) pp 556–563
Steinberg M S 1963 Reconstruction of tissues by dissociated cells;Science 141 401–408
Stevens A 1990 Simulations of the gliding behaviour and aggregation of Myxobacteria; inBiological motion. Lecture notes in biomathematics (eds) WAlt and GHoffmann (Berlin, Heidelberg: Springer) pp 548–555
Turing A M 1952 The chemical basis of morphogenesis;Philos. Trans. R. Soc. London 237 37–72
Wolff C F 1759Theorie von der Generation in zwei Abhandlungen erklÄrt und bewiesen (Theoria Generationis Halle Berlin 1764). Hildesheim, 1966. mit einer Einleitung von R Herrlingcr
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Deutsch, A. Principles of biological pattern formation: swarming and aggregation viewed as selforganization phenomena. J. Biosci. 24, 115–120 (1999). https://doi.org/10.1007/BF02941115
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02941115

