Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Semi-Universal unfoldings and orbits of the contact group

  • 34 Accesses

This is a preview of subscription content, log in to check access.

References

  1. [1]

    J. Bochnak andJ. Siciak, Analytic functions in topological vector spaces.Studia Math. 39 (1971), 77–112.

  2. [2]

    J. F. Colombeau,Différentiation et bornologie. Thesis, Université de Bordeaux (1973).

  3. [3]

    A. Grothendieck,Topological vector spaces. Gordon and Breach (1973).

  4. [4]

    R. S. Hamilton, The inverse function theorem of Nash and Moser.Bull. Amer. Math. Soc. 7 (1982), 65–222.

  5. [5]

    H. Hauser, La construction de la déformation semi-universelle d’un germe de variété analytique complexe.Ann. Sci. Éc. Norm. Sup. (4)18 (1985), 1–56.

  6. [6]

    H. Hauser andG. Müller, Analytic curves in power series rings.Compos. Math. 76 (1990), 197–201.

  7. [7]

    ———, Automorphism groups in local analytic geometry, infinite dimensional Rank Theorem and Lie groups.C. R. Acad. Sci. Paris, I. Ser. 313 (1991), 751–756.

  8. [8]

    ———, A Rank Theorem for analytic maps between power series spaces.Publ. Math. IHES 80 (1994), 95–115.

  9. [9]

    M. Hervé,Analyticity in infinite dimensional spaces. De Gruyter (1989).

  10. [10]

    M. Jurchescu, On the canonical topology of an analytic algebra and of an analytic module.Bull. Soc. Math. France 93 (1965), 129–153.

  11. [11]

    J. Leslie, On the group of real analytic diffeomorphisms of a compact real analytic manifold.Trans. Amer. Math. Soc. 274 (1982), 651–669.

  12. [12]

    J. Mather,Notes on right equivalence. Preprint (1969).

  13. [13]

    J. Milnor, Remarks on infinite-dimensional Lie groups. In:Relativité, groupes et topologie II. (eds. B. S. DeWitt, R. Stora), Elsevier (1984), 1007–1057.

  14. [14]

    D. Pisanelli, The proof of the Frobenius theorem in a Banach scale. In:Functional analysis, holomorphy and approximation theory. (ed. G. I. Zapata), Marcel Dekker (1983), 379–389.

  15. [15]

    ---, The proof of the inversion mapping theorem in a Banach scale. In:Complex analysis, functional analysis and approximation theory. (ed. J. Mujica), North-Holland (1986), 281–285.

  16. [16]

    H. Upmeier,Symmetric Banach manifolds and Jordan C-algebras. North-Holland (1985).

Download references

Author information

Correspondence to H. Hauser or G. Müller.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hauser, H., Müller, G. Semi-Universal unfoldings and orbits of the contact group. Abh.Math.Semin.Univ.Hambg. 66, 1–9 (1996). https://doi.org/10.1007/BF02940792

Download citation

Keywords

  • Banach Space
  • Tangent Space
  • Open Neighborhood
  • Topological Vector Space
  • Formal Power Series