The classification of the simple modular lie algebras: V. algebras with Hamiltonian two-sections

  • H. Strade


We investigate the structure of simple modular Lie algebrasL over an algebraically closed field of characteristic p > 7. Every optimal torusT in some p-envelope ofL defines uniquely a subalgebraQ(L, T) ofL. We classify all L, for whichQ(L, T) ≠ L and which have a two-section of typeH (2; 1;Ф(τ))(1)


Root Vector Root Space Cartan Type Abelian Ideal Maximal Subalgebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G.M. Benkart. Simple Modular Lie Algebras with 1-sections that are Classical or Solvable. Comm. Algebra18 (1990), 3633–3638.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    G.M. Benkart andT. Gregory. Graded Lie Algebras with Classical Reductive Null Component. Math. Ann.285 (1989), 85–98.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    G.M. Benkart andJ.M. Osborn. Rank One Lie Algebras. Ann. Math.119 (1984), 437–463.CrossRefMathSciNetGoogle Scholar
  4. [4]
    G.M. Benkart andJ.M. Osborn. Toral Rank One Lie Algebras. J. Algebra115 (1988), 238–250.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    G.M. Benkart andJ.M. Osborn. Simple Lie Algebras of Characteristicp With Dependent Roots. Trans. Amer. Math. Soc.318 (1990), 783–807.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    G.M. Benkart, J.M. Osborn and H. Strade. Contributions to the Classification of Simple Modular Lie Algebras. Trans. Amer. Math. Soc, to appear.Google Scholar
  7. [7]
    R.E. Block andR.L. Wilson. The Simple Lie-p-algebras of Rank Two. Ann. of Math.115 (1982), 93–168.CrossRefMathSciNetGoogle Scholar
  8. [8]
    R.E. Block andR.L. Wilson. Classification of the Restricted Simple Lie Algebras. J. Algebra114 (1988), 115–259.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    A.I. Kostrikin. A Theorem on Semisimple Lie-p-algebras. Math. Notes2 (1967), 773–778.MathSciNetGoogle Scholar
  10. [10]
    A.I. Kostrikin andI.R. Shafarevic. Cartan Pseudogroups and Lie-p-algebras. Soviet Math. Dokl.7 (1966), 715–718.zbMATHGoogle Scholar
  11. [11]
    A.I. Kostrikin andI.R. Shafarevic. Graded Lie Algebras of Finite Characteristic. Izv. Akad. Nauk SSR Ser. Mat.33 (1969), 251–322.Google Scholar
  12. [12]
    G.B. Seligman. Modular Lie Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete40, Springer-Verlag 1967.Google Scholar
  13. [13]
    H. Strade. The Absolute Toral Rank of a Lie Algebra. In: G.M. Benkart and J.M.Osborn (eds.), Lie Algebras, Madison 1987, Lecture Notes in Math.1373 (1989), Springer Berlin-New York, 1–28.Google Scholar
  14. [14]
    H. Strade. The Classification of the Simple Modular Lie Algebras: I. Determination of the Two-sections. Ann. of Math.130 (1989), 643–677.CrossRefMathSciNetGoogle Scholar
  15. [15]
    H. Strade. Lie Algebra Representations of Dimension <p 2, Trans. Amer. Math. Soc.319 (1990), 689–709.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    H. Strade. The Classification of the Simple Modular Lie Algebras: II. The Toral Structure. J. Algebra151 (1992), 425–75.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    H. Strade. New Methods for the Classification of Simple Modular Lie Algebras. Mat. Sbornik181 (1990), 1391–1402.zbMATHGoogle Scholar
  18. [18]
    H. Strade. Representations of the (p 1 - l)-dimensional Lie Algebras of R.E. Block. Can. J. Math.43 (1991), 580–616.zbMATHMathSciNetGoogle Scholar
  19. [19]
    H. Strade. The Classification of the Simple Modular Lie Algebras: III. Solution of the Classical Case. Ann. of Math.133 (1991), 577–604.CrossRefMathSciNetGoogle Scholar
  20. [20]
    H. Strade. The Classification of the Simple Modular Lie Algebras: IV. Determining of the Associated Graded Algebra. Ann. of Math.138 (1993), 1–59.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    H. Strade and R. Farnsteiner. Modular Lie Algebras and Their Representations. Marcel Dekker Textbooks and Monographs116 (1988).Google Scholar
  22. [22]
    H. Strade andR.L. Wilson. Gasification of Simple Lie Algebras over Algebraically Closed Fields of Prime Characteristic. Bull. Amer. Math. Soc.24 (1991), 357–362.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Y. Weisfeiler. On the Structure of the Minimal Ideals of Some Graded Lie Algebras in Characteristic p > 0. J. Algebra53 (1978), 344–361.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    R.L. Wilson. Cartan Subalgebras of Simple Lie Algebras. Trans. Amer. Math. Soc.234 (1977), 435–446; Trans. Amer. Math. Soc.305 (1988), 851-855.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    R.L. Wilson. A Structural Characterization of the Simple Lie Algebras of Generalized Cartan Type over Fields of Prime Characteristic. J. Algebra40 (1976), 418–65.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    R.L. Wilson. Simple Lie Algebras of Toral Rank One. Trans. Amer. Math. Soc.236 (1978), 287–295.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematische Seminar 1994

Authors and Affiliations

  • H. Strade
    • 1
  1. 1.Mathematisches Seminar der UniversitätHamburgGermany

Personalised recommendations