Skip to main content

Pharmacologic stress testing: Mechanism of action, hemodynamic responses, and results in detection of coronary artery disease

Abstract

Pharmacologic stress testing may be used in the diagnosis of coronary artery disease and risk assessment. The stress agents may be divided into those that produce primary coronary vasodilation (dipyridamole, adenosine, or adenosine triphosphate) and those that produce secondary vasodilation as a result of increase in myocardial oxygen demand (dobutamine and arbutamine). Assessment of myocardial perfusion and function can be made by single-photon imaging, positron emission tomography, two-dimensional echocardiography, magnetic resonance imaging, and contrast angiography. For assessment of myocardial perfusion, either thallium 201-labeled or technetium-labeled perfusion imaging agents may be used. This article will focus on the mechanisms of action, hemodynamic responses, and results of pharmacologic imaging in detecting coronary artery disease. The use of pharmacologic stress testing in risk assessment will be discussed in a separate article.

This is a preview of subscription content, access via your institution.

References

  1. Iskandrian AS, Heo J, Kong B, Lyons E. Effect of exercise level on the ability of thallium-201 tomographic imaging in detecting coronary artery disease: analysis of 461 patients. J Am Coll Cardiol 1989;14:1477–86.

    PubMed  Article  CAS  Google Scholar 

  2. Verani MS, Mahmarian JJ. Myocardial perfusion scintigraphy during maximal coronary artery vasodilation with adenosine. Am J Cardiol 1991;67:12D-7D.

    PubMed  Article  CAS  Google Scholar 

  3. Leppo JA, Boucher CA, Okada RD, et al. Serial thallium-201 myocardial imaging after dipyridamole infusion: diagnostic utility in detecting coronary stenoses and relationship to regional wall motion. Circulation 1982;66:649–57.

    PubMed  CAS  Google Scholar 

  4. Gill JB, Miller D, Boucher CA, et al. Clinical decision making: dipyridamole-thallium imaging. J. Nucl Med 1986;27:132–7.

    PubMed  CAS  Google Scholar 

  5. Brown BG, Josephson MA, Peterson RD, et al. Intravenous dipyridamole combined with isometric handgrip for near maximal acute increase in coronary flow in patients with coronary artery disease. Am J Cardiol 1981;48:1077–85.

    PubMed  Article  CAS  Google Scholar 

  6. Verani MS. Adenosine thallium-201 myocardial perfusion scintigraphy. Am Heart J 1991;122:269–78.

    PubMed  Article  CAS  Google Scholar 

  7. Verani MS, Mahmarian JS, Hixson JB, Boyce TM, Staudacher RA. Diagnosis of coronary artery disease by controlled coronary vasodilation with adenosine and thallium-201 scintigraphy in patients unable to exercise. Circulation 1990;82:80–7.

    PubMed  CAS  Google Scholar 

  8. Kinoshita S, Suzuki S, Yamashita S, et al. Thallium-201 myocardial scintigraphy after intravenous infusion of adenosine triphosphate disodium in the diagnosis of coronary artery disease [Abstract]. Presented at First International Congress of Nuclear Cardiology, Cannes, France, April 25–28, 1993.

  9. Nguyen T, Heo J, Ogilby D, Iskandrian AS. Single-photon emission computed tomography with thallium-201 during adenosine-induced coronary hyperemia: correlation with coronary arteriography, exercise thallium imaging, and two-dimensional echocardiography. J Am Coll Cardiol 1990;16:1375–83.

    PubMed  CAS  Google Scholar 

  10. Belardinelli L, West A, Crampton R, Berne RM. Chronotropic and dromotropic actions of adenosine. In: Berne RM, Rall TW, Rubio R, eds. The regulatory function of adenosine. The Hague: Martinus Nijhoff, 1983:378–98.

    Google Scholar 

  11. Beller GA. Dipyridamole cardiac imaging. JAMA 1991;265:633–8.

    PubMed  Article  CAS  Google Scholar 

  12. Beller GA, Holzgrefe HH, Watson DD. Effects of dipyridamole-induced vasodilation on myocardial uptake and clearance kinetics of thallium-201. Circulation 1983;68:1328–38.

    PubMed  CAS  Google Scholar 

  13. Gould KL. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilatation, I: physiologic basis and experimental validation. Am J Cardiol 1978;41:267–78.

    PubMed  Article  CAS  Google Scholar 

  14. Gould KL, Westcott JR, Albro PC, Hamilton GW. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation, II: clinical methodology and feasibility. Am J Cardiol 1978;41:279–87.

    PubMed  Article  CAS  Google Scholar 

  15. Iskandrian AS, Heo J. Pharmacologic stress testing. In: Zaret BL, Beller GA, eds. Nuclear cardiology: state of the art and future directions. St Louis: Mosby-Year Book, 1992:170–80.

    Google Scholar 

  16. Beer S, Heo J, Iskandrian AS. Dipyridamole thallium imaging. Am J Cardiol 1991;67:18D-26D.

    PubMed  Article  CAS  Google Scholar 

  17. Elliot BM, Robinson JG, Zellner JL, Hendrix GH. Dobutamine 201-T1 imaging: assessing cardiac risks associated with vascular surgery. Circulation 1991; 84(suppl):III-54–60.

    Google Scholar 

  18. Hays JT, Mahmarian JJ, Cochran AJ, Verani MS. Dobutamine thallium-201 tomography for evaluating patients with suspected coronary artery disease unable to undergo exercise or vasodilator pharmacologic stress testing. J Am Coll Cardiol 1993;21:1583–90.

    PubMed  CAS  Google Scholar 

  19. Marwick T, Willemart B, D’Hondt AM, et al. Selection of the optimal nonexercise stress for the evaluation of ischemic regional myocardial dysfunction and malperfusion: comparison of dobutamine and adenosine using echocardiography and Tc-99m MIBI single photon emission computed tomography. Circulation 1993;87:345–54.

    PubMed  CAS  Google Scholar 

  20. Marwick T, D’Hondt AM, Baudhuin T, et al. Optimal use of dobutamine stress for the detection and evaluation of coronary artery disease: combination with echocardiography or scintigraphy or both? J Am Coll Cardiol 1993;22:159–67.

    PubMed  CAS  Google Scholar 

  21. Mason JR, Palac RJ, Freeman ML, et al. Thallium scintigraphy during dobutamine infusion: non-exercise dependent screening test for coronary disease. Am Heart J 1984;107:481–5.

    PubMed  Article  CAS  Google Scholar 

  22. Meretes IT, Sawada MB, Ryan T, et al. Symptoms, adverse effects, and complications associated with dobutamine stress echocardiography: experience in 1,118 patients. Circulation 1993;88:15–9.

    Google Scholar 

  23. Pennell DJ, Underwood SR, Swanton RH, et al. Dobutamine thallium myocardial perfusion tomography. J Am Coll Cardiol 1991;18:1471–9.

    PubMed  CAS  Google Scholar 

  24. Pennell DJ, Underwood SR, Ell PJ. Safety of dobutamine stress for thallium-201 myocardial perfusion tomography in patients with asthma. Am J Cardiol 1993;71:1346–50.

    PubMed  Article  CAS  Google Scholar 

  25. Poldermans D, Fioretti PM, Forster T, et al. Dobutamine stress echocardiography for assessment of perioperative cardiac risk in patients undergoing major vascular surgery. Circulation 1993;87:1506–12.

    PubMed  CAS  Google Scholar 

  26. Ogilby D, Iskandrian AS, Untereker W, Heo J, Nguyen TN, Mercuro J. Effect of intravenous adenosine infusions on myocardial perfusion and function. Hemodynamic angiographic and scintigraphy study. Circulation 1992;86:887–95.

    PubMed  CAS  Google Scholar 

  27. Chan SY, Brunken RD, Czernin J, et al. Comparison of maximal myocardial blood flow during adenosine infusion with that of intravenous dipyridamole in normal men. J Am Coll Cardiol 1992;20:979–85.

    PubMed  CAS  Google Scholar 

  28. Krivokapich J, Huang S-C, Schelbert HR. Assessment of the effects of dobutamine on myocardial blood flow and oxidative metabolism in normal human subjects. using nitrogen-13 ammonia and carbon-11 acetate. Am J Cardiol 1993;71:1351–6.

    PubMed  Article  CAS  Google Scholar 

  29. Krivokapich J, Smith GT, Huang SC, et al. N-13 ammonia myocardial imaging at rest and with exercise in normal volunteers: quantification of absolute myocardial perfusion with dynamic positron emission tomography. Circulation 1989;80:1328–37.

    PubMed  CAS  Google Scholar 

  30. Kern MJ, Deligonul U, Tatineni S, et al. Intravenous adenosine: continuous infusion and low dose bolus administration for determination of coronary vasodilator reserve in patients with and without coronary artery disease. J Am Coll Cardiol 1991;18:718–29.

    PubMed  CAS  Google Scholar 

  31. Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation 1990;82:1595–606.

    PubMed  CAS  Google Scholar 

  32. Rossen JD, Quillen JE, Lopez AG, et al. Comparison of coronary vasodilation with intravenous dipyridamole and adenosine. J Am Coll Cardiol 1991;18:485–91.

    PubMed  CAS  Google Scholar 

  33. Rossen JD, Simonetti I, Marcus ML, et al. Coronary dilation with standard dose dipyridamole and dipyridamole combined with handgrip. Circulation 1989;79:566–72.

    PubMed  CAS  Google Scholar 

  34. Picano E, Lattanzi F, Masini M, et al. High-dose dipyridamole-echocardiography test in effort angina pectoris. J Am Coll Cardiol 1986;8:848–54.

    PubMed  CAS  Google Scholar 

  35. Lee J, Heo J, Ogilby JD, Cave V, Iskandrian B, Iskandrian AS. Atrioventricular block during adenosine thallium imaging. Am Heart J 1992;123:1569–74.

    PubMed  Article  CAS  Google Scholar 

  36. Casole PN, Guiney TE, Strauss HW, Boucher CA. Simultaneous low level treadmill exercise and intravenous dipyridamole stress thallium imaging. Am J Cardiol 1988;62:799–802.

    Article  Google Scholar 

  37. Stern S, Greenberg ID, Corne RA. Quantification of walking exercise required for improvement of dipyridamole thallium-201 image quality. J Nucl Med 1992;33:2061–6.

    PubMed  CAS  Google Scholar 

  38. Ranhosky A, Kempthorne-Rawson J, Intravenous Dipyridamole Thallium Imaging Study Group. The safety of intravenous dipyridamole thallium myocardial perfusion imaging. Circulation 1990;81:1205–9.

    PubMed  CAS  Google Scholar 

  39. Cerqueira MD, Verani MS, Schwaiger M, Heo J, Iskandrian AS. Safety profile of adenosine stress perfusion imaging in 9,256 patients: results from the Adenoscan Multicenter Trial Registry. J Am Coll Cardiol (in press).

  40. Abreu A, Mahmarian JJ, Nishimura S, Boyce TM, Verani MS. Tolerance and safety of pharmacologic coronary vasodilation with adenosine in association with thallium-201 scintigraphy in patients with suspected coronary artery disease. J Am Coll Cardiol 1991;18:730–5.

    PubMed  CAS  Google Scholar 

  41. Nishimura S, Kimball KT, Mahmarian JJ, Verani MS. Angiographic and hemodynamic determinants of myocardial ischemia during adenosine thallium-201 scintigraphy in coronary artery disease. Circulation 1993;87:1211–9.

    PubMed  CAS  Google Scholar 

  42. Picano E, Masini M, Lattanzi F, et al. Short term reproducibility of exercise testing in patients with ST segment elevation and different responses to the dipyridamole test. Br Heart J 1988;60:281–6.

    PubMed  Article  CAS  Google Scholar 

  43. Iskandrian AS, Heo J. Myocardial ischemia during pharmacologic coronary vasodilatation: a concept in search of definition. Cathet Cardiovasc Diagn 1989;18:65–6.

    PubMed  Article  CAS  Google Scholar 

  44. Iskandrian AS. Myocardial ischemia during pharmacological stress testing [Editorial]. Circulation 1993;87:1415–7.

    PubMed  CAS  Google Scholar 

  45. Gupta NC, Esterbrooks DJ, Hilleman DE, Mohuiddin SM. Comparison of adenosine and exercise thallium-201 SPECT myocardial perfusion imaging. J Am Coll Cardiol 1992;19:248–56.

    PubMed  CAS  Google Scholar 

  46. Coyne EP, Belvedere DA, Vande Streek PR, et al. Thallium-201 scintigraphy after intravenous infusion of adenosine compared with exercise thallium testing in the diagnosis of coronary artery disease. J Am Coll Cardiol 1991;17:1289–94.

    PubMed  CAS  Google Scholar 

  47. Leppo JA, Boucher CA, Okada RD, Newell JB, Strauss HW, Pohost GM. Serial thallium-201 myocardial imaging after dipyridamole infusion: diagnostic utility in detecting coronary stenoses and relationship to regional wall motion. Circulation 1982;66:649–57.

    PubMed  CAS  Google Scholar 

  48. Nishimura S, Mahmarian JJ, Boyce TM, Verani MS. Quantitative thallium-201 single-photon emission computed tomography during maximal pharmacologic coronary vasodilation with adenosine for assessing coronary artery disease. J Am Coll Cardiol 1991;18:736–45.

    PubMed  CAS  Google Scholar 

  49. Allman KC, Berry J, Sucharski LA, et al. Determination of extent and location of coronary artery disease in patients without prior myocardial infarction by thallium-201 tomography with pharmacologic stress. J Nucl Med 1992;33:2067–73.

    PubMed  CAS  Google Scholar 

  50. Iskandrian AS, Heo J, Nguyen T, et al. Assessment of coronary artery disease using single-photon emission computed tomography with thallium-201 during adenosine-induced coronary hyperemia. Am J Cardiol 1991;67:1190–4.

    PubMed  Article  CAS  Google Scholar 

  51. Iskandrian AS, Heo J, Lemlek J, et al. Identification of high-risk patients with left main and three-vessel coronary artery disease by adenosine-single photon emission computed tomographic thallium imaging. Am Heart J 1993;125:1130–5.

    PubMed  Article  CAS  Google Scholar 

  52. Iskandrian AS, Heo J, Nguyen T, Lyons E, Paugh E. Left ventricular dilation and pulmonary thallium uptake after single-photon emission computed tomography using thallium-201 during adenosine induced coronary hyperemia. Am J Cardiol 1990;66:807–11.

    PubMed  Article  CAS  Google Scholar 

  53. Civelek AC, Gozukara I, Durski K, et al. Detection of left anterior descending coronary artery disease in patients with left bundle branch block. Am J Cardiol 1992;70:1565–70.

    PubMed  Article  CAS  Google Scholar 

  54. O’Keefe JH, Bateman TM, Barnhart CS. Adenosine thallium-201 is superior to exercise thallium-201 for detecting coronary artery disease in patients with left bundle branch block. J Am Coll Cardiol 1993;21:1332–8.

    PubMed  Article  Google Scholar 

  55. Gupta NC, Esterbrooks DM, Shiue C, Mohiuddin S, Hilleman D, Frick MD. Utility of adenosine PET (perfusion/metabolic) imaging in patients with acute myocardial infarction following thrombolytic therapy. Radiology 1990;177:234–5.

    Google Scholar 

  56. Yonekura Y, Tamaki N, Senda M, et al. Detection of coronary artery disease with ammonia and high-resolution positron-emission computed tomography. Am Heart J 1987;113:645–54.

    PubMed  Article  CAS  Google Scholar 

  57. Schelbert HR, Wisenberg G, Phelps ME, et al. Noninvasive assessment of coronary stenosis by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in man with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 1982;49:1197–207.

    PubMed  Article  CAS  Google Scholar 

  58. Martin TW, Seaworth JF, Johns JP, Pupa LE, Condos WR. Comparison of adenosine, dipyridamole, and dobutamine in stress echocardiography. Ann Intern Med 1992;116:190–6.

    PubMed  CAS  Google Scholar 

  59. Coma-Canella I, Martinez MG, Rodrigo F, et al. The dobutamine stress test with thallium-201 single photon emission computed tomography and radionuclide angiography: post infarction study. J Am Coll Cardiol 1993;22:399–406.

    PubMed  CAS  Google Scholar 

  60. Zoghbi WA, Cheirif J, Kleiman NS, et al. Diagnosis of ischemic heart disease with adenosine echocardiography. J Am Coll Cardiol 1991;18:1271–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iskandrian, A.S., Verani, M.S. & Heo, J. Pharmacologic stress testing: Mechanism of action, hemodynamic responses, and results in detection of coronary artery disease. J Nucl Cardiol 1, 94–111 (1994). https://doi.org/10.1007/BF02940016

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02940016

Key Words

  • pharmacologic stress testing
  • thallium 201
  • technetium 99m sestamibi
  • dipyridamole
  • adenosine
  • dobutamine
  • coronary artery disease