Skip to main content
Log in

Clinical cardiac PET: Quo vadis?

  • Editorials
  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Brunken RC, Kottou S, Nienaber CA, et al. PET detection of viable tissue in myocardial segments with persistent defects at T1-201 SPECT. Radiology 1989;172:65–73.

    PubMed  CAS  Google Scholar 

  2. Brunken R, Vaghaiwalla Mody F, Hawkins R, Nienaber C, Phelps M, Schelbert H. Metabolic imaging with Positron Emission Tomography detects viable tissue in myocardial segments with persistent defects on twenty-four hour tomographic thallium-201 scintigraphy. Circulation 1992;86:1357–69.

    PubMed  CAS  Google Scholar 

  3. Vaghaiwalla Mody F, Brunken R, Warner-Stevenson L, Nienaber C, Phelps M, Schelbert H. Differentiating cardiomyopathy of coronary artery disease from nonischemic dilated cardiomyopathy utilizing positron tomography. J Am Coll Cardiol 1991;17:373–83.

    Google Scholar 

  4. Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall motion abnormalities predicted by positron tomography. New Engl J Med 1986;314:884–8.

    PubMed  CAS  Google Scholar 

  5. Tamaki N, Yonekura Y, Yamashita K, et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 1989;64:860–5.

    Article  PubMed  CAS  Google Scholar 

  6. Tamaki N, Ohtani H, Yamashita K, et al. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 1991;32:673–8.

    PubMed  CAS  Google Scholar 

  7. Lucignani G, Paolini G, Landoni C, et al. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 1992;19:874–81.

    Article  PubMed  CAS  Google Scholar 

  8. Carrel T, Jenni R, Haubold-Reuter S, Von Schulthess G, Pasic M, Turina M. Improvement of severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction. Eur J Cardiothorac Surg 1992;6:479–84.

    Article  PubMed  CAS  Google Scholar 

  9. Besozzi MC, Brown MD, Hubner KF, et al. Retrospective post therapy evaluation of cardiac function in 208 coronary artery disease patients evaluated by Positron Emission Tomography. J Nucl Med 1992;33:885 (Abstract).

    Google Scholar 

  10. Louie H, Laks H, Milgalter E, et al. Ischemic cardiomyopathy: criteria for coronary revascularization and cardiac transplantation. Circulation 1991;84:III290–III295.

    Google Scholar 

  11. Eitzman D, Al-Aouar Z, Kanter H, et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992;20:559–65.

    PubMed  CAS  Google Scholar 

  12. Di Carli M, Davidson M, Little R, et al. Value of metabolic imaging with Positron Emission Tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994;73:527–33.

    Article  PubMed  Google Scholar 

  13. Tamaki N, Kawamoto M, Takahashi N, et al. Prognostic value of an increase in fluorine-18 deoxyglucose uptake in patients with myocardial infarction: comparison with stress thallium imaging. J Am Coll Cardiol 1993;22:1621–7.

    PubMed  CAS  Google Scholar 

  14. Di Carli M, Schelbert H, Asgarzadie F, et al. Is there a relationship between myocardial viability and change in heart failure post revascularization in patients with poor LV function? J Nucl Med 1994;35:49P.

    Google Scholar 

  15. Nickles R, Nunn A, Stone C, Christian B. Technetium-99m-teboroxime: synthesis, dosimetry and initial PET imaging studies. J Nucl Med 1993;34:1058–66.

    PubMed  CAS  Google Scholar 

  16. Herrero P, Markham J, Weinheimer CJ, et al. Quantification of regional myocardial perfusion with genertor-produced 62Cu-PTSM and Positron Emission Tomography. Circulation 1993;87:173–83.

    PubMed  CAS  Google Scholar 

  17. Czernin J, Müller P, Chan S, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 1993;88:62–9.

    PubMed  CAS  Google Scholar 

  18. Kuhle W, Porenta G, Huang S-C, et al. Quantification of regional myocardial blood flow using 13N-ammonia and reoriented dynamic positron emission tomographic imaging. Circulation 1992;86:1004–17.

    PubMed  CAS  Google Scholar 

  19. Schelbert H. Cardiac PET: microcirculation and substrate transport in normal and diseased human myocardium. Ann Nucl Med 1994;8:91–100.

    Article  PubMed  CAS  Google Scholar 

  20. Uren N, Melin J, De Bruyne B, Wijns W, Baudhuin T, Camici P. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 1994;330:1782–8.

    Article  PubMed  CAS  Google Scholar 

  21. Geltman E, Henes C, Senneff M, Sobel B, Bergmann S. Increased myocardial perfusion at rest and diminished perfusion reserve in patients with angina and angiographically normal coronary arteries. J Am Coll Cardiol 1990;16:586–95.

    PubMed  CAS  Google Scholar 

  22. Rosen S, Uren N, Kaski J-C, Tousoulis D, Davies G, Camici P. Coronary vasodilator reserve, pain perception, and sex in patients with syndrome X. Circulation 1994;90:50–60.

    PubMed  CAS  Google Scholar 

  23. Zeiher A, Drexler H, Wollschläger H, Just H. Endothelial dysfunction of the coronary microvasculature is associated with impaired coronary blood flow regulation in patients with early athrosclerosis. Circulation 1991;84:1984–92.

    PubMed  CAS  Google Scholar 

  24. Grambow D, Dayanikli F, Muzik O, et al. Assessment of endothelial function with PET cold pressure test in patients with various degrees of coronary atherosclerosis. J Nucl Med 1993;34:P36.

    Google Scholar 

  25. Dayanikli F, Stevens M, Pek S, Corbett J, Schwaiger M. Reduced coronary flow reserve in insulin dependent diabetics demonstrated by dynamic N-13 ammonia PET. J Nucl Med 1994;35:4P.

    Google Scholar 

  26. Schwaiger M, Kalff V, Rosenspire K, et al. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation 1990;82:457–64.

    PubMed  CAS  Google Scholar 

  27. Corbett J, Chiao P-C, del Rosario R, et al. Mapping neuronal enzyme function of the human heart with C-11 phenylephrine. J Nucl Med 1994;35:109P.

    Google Scholar 

  28. Delforge J, Syrota A, Lançon J, et al. Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177, and a new graphical method. J Nucl Med 1991;32:739–48.

    PubMed  CAS  Google Scholar 

  29. Allman K, Wieland D, Muzik O, Degrado T, Wolfe E, Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol 1993;22:368–75.

    Article  PubMed  CAS  Google Scholar 

  30. Calkins H, Lehmann MH, Allman K, Wieland D, Schwaiger M. Scintigraphic pattern of regional cardiac sympathetic innervation in patients with familial long QT syndrome using positron emission tomography. Circulation 1993;87:1616–21.

    PubMed  CAS  Google Scholar 

  31. Calkins H, Allman K, Bolling S, et al. Correlation between scintigraphic evidence of regional sympathetic neuronal dysfunction and ventricular refractoriness in the human heart. Circulation 1993;88:172–9.

    PubMed  CAS  Google Scholar 

  32. Merlet P, Delforge J, Syrota A, et al. Positron emission tomography with11C CGP-12177 to assess B-adrenergic receptor concentration in idiopathic dilated cardiomyopathy. Circulation 1993;87:1169–78.

    PubMed  CAS  Google Scholar 

  33. Kelly D, Mendelsohn N, Sobel B, Bergmann S. Detection and assessment by positron emission tomography of a genetically determined defect in myocardial fatty acid utilization (long-chain ACYL-COA dehydrogenase deficiency). Am J Cardiol 1993;71:738–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Operated for the U.S. Department of Energy by the University of California under contract DE-AC03-76-SF00012. This work was supported in part by the Director of the Office of Energy Research, Office of Health and Environmental Research, Washington D.C., by research grants HL 29845 and HL 33177, National Institutes of Health, Bethesda, MD and by an Investigative Group Award by the Greater Los Angeles Affiliate of the American Heart Association, Los Angeles, Calif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schelbert, H.R., Maddahi, J. Clinical cardiac PET: Quo vadis?. J Nucl Cardiol 1, 576–579 (1994). https://doi.org/10.1007/BF02939982

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02939982

Navigation