Skip to main content

Modelling medical devices: The application of bioenginering in surgery

Abstract

Medical device technology has an increasingly important role in surgical procedures. In this article, five case studies of bioengineering in surgery are described as follows: computer-aided design of vascular grafts; middle-ear prostheses; hip prosthesis stems for optimal cement pressurisation; prototype development of a device for measurement of abdominal sounds for monitoring digestive tract activity and a hand-access device for laparoscopic surgery. In each case, new bioengineering design methodologies are demonstrated. The general principles underlying the application of bioengineering in surgery are discussed.

This is a preview of subscription content, access via your institution.

References

  1. Holt, K., Geschka, H., Peterlongo, G. Need Assessment, A Key to User-orientated Product Innovation. John Wiley & Sons: Chichester, 1984.

    Google Scholar 

  2. Petroski, H. The Evolution of Useful Things. Pavilion Books: London, 1993.

    Google Scholar 

  3. Loth, F., Jones, S. A., Gideens, D. P., Bassiouny, H. S., Glagov, S., Zarins, C. K. Measurements of velocity and wall shear stresses inside a vascular graft model under steady flow conditions. J. Biomech. Eng. 1997; 119: 187–194.

    Article  PubMed  CAS  Google Scholar 

  4. Lei, M., Kleinstreur, C., Archie, J. P. Geometric design improvements for femoral graft artery junctions migrating restenosis. J. Biomech. 1998; 9: 1605–1614.

    Google Scholar 

  5. Calvacanti, E. A. Numerical simulation of arterial haemodynamics. In: Bio-fluid mechanics: Advances in Fluid Mechanics. Computational Mechanics Publications: Southampton, 1995.

    Google Scholar 

  6. Sarr, M. G., Bulkley, G. B., Zuidema, G. D. Preoperative recognition of intestinal strangulation obstruction: prospective evaluation of diagnostic capability. Am. J. Surg. 1983; 145: 176–181.

    Article  PubMed  CAS  Google Scholar 

  7. Campbell, F. C., Storey, B. E., Cullen, P. T., Cushieri, A. Surface vibration analysis (SVA): A new non-invasive monitor of gastrointestinal activity. Gut 1989; 30: 39–45.

    Article  PubMed  CAS  Google Scholar 

  8. Yoshino, H., Yoshino, T., Ohsato, K. Clinical application of spectral analysis of bowel sounds in intestinal obstruction. Dis. Colon Rect. 1990; 33: 753–757.

    Article  CAS  Google Scholar 

  9. Familoni, B. O., Bowes, K. L., Kingma, Y. J., Cote, K. R. Can transcutaneous recordings detect gastric electrical abnormalities? Gut 1991; 32: 141–146.

    Article  PubMed  CAS  Google Scholar 

  10. Clevers, G. J., Smout, A. J. P., Van Der Schee, E. J., Akkermans, L. M. A. Myo-electrical and motor activity of the human stomach in the first days after abdominal surgery: evaluation by electrogastrography and impedance gastrography. J. Gastro. Hepat. 1991; 6: 253–159.

    Article  CAS  Google Scholar 

  11. Bray, D. C. The Analysis of Abdominal Sounds, M.Eng.Sc. Thesis, The National University of Ireland, Dublin, 1998.

    Google Scholar 

  12. Krause, W. R., Millar, J., Ng, P. The viscosity of acrylic bone cements. J. Biomed. Mater. Res. 1982; 16: 219–243.

    Article  PubMed  CAS  Google Scholar 

  13. Dunne, N. J. Evaluation of static and dynamic properties of polymthylacrylate bone cements and their effects on implant fixation. Ph.D. Thesis, The Queen’s University of Belfast, 1998.

  14. Markolf, K. L., Amstutz, H. C. Penetration and flow of acrylic bone cement. Clin. Orthop. Rel. Res. 1976; 121: 99–102.

    Google Scholar 

  15. Prendergast, P. J. Finite element modelling in tissue mechanics and orthopaedic implant design. Clin. Biomech. 1997; 12: 343–366.

    Article  Google Scholar 

  16. McAvoy, G. Vibroacoustic finite element model of the middle-ear. M.Sc. Thesis, University of Dublin, 1995.

  17. Ferris, P. Finite element models of the natural and reconstructed middle ear. M.Sc. Thesis, University of Dublin, 1998.

  18. Gorey, T. F., O’Connell, P. R., Waldron, D. Laparoscopically assisted reversal of Hartmann’s procedure. Br. J. Surg. 1993; 80: 109.

    Article  PubMed  CAS  Google Scholar 

  19. Gorey, T. F., Tierney, S., Buckley, D., O’Riordan, M., Fitzpatrick, J. M. Video-assisted Nissen’s fundoplication using a hand-access port. Min. Invas. Ther. & Allied Technol. 1996; 5: 364–366.

    Article  Google Scholar 

  20. Gorey, T. F., O’Riordan, M., Tierney, S., Buckley, D., Fitzpatrick, J. M. Laparoscopic-assisted rectopexy using a novel hand access port. J. Laparoendoscopic Surg. 1996; 6: 325–328.

    CAS  Google Scholar 

  21. Gorey, T. F., Tierney, S., O’Riordan, M., Buckley, D., Gibbons, N., Fitzpatrick, J. M. Combined hand-access with laparoscopic pneumoperitoneum in intraperitoneal adhesiolysis. Ir. J. Med. Sc. 1996; 165: 297–298.

    CAS  Google Scholar 

  22. Delaney, C. P., Johnston, S. M., White, B., Otridge, B., Fitzpatrick, J. M., Gorey, T. F. Laparoscopic-assisted splenectomy using a hand-access port. Min. Invas. Ther. & Applied Technol. 1998; 7: 359–64.

    Article  Google Scholar 

  23. Svendsen, O. Alternatives to animal testing of medical devices. ATLA 1996; 24: 639–669.

    Google Scholar 

  24. Grace, P. A. The third Samuel Haughton Lecture: Men, Medicine, and Machines. Ir. J. Med. Sci. 1997; 166: 152–156.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Prendergast.

Additional information

This paper was read, in part, at a joint meeting of the Section of Surgery and the Section of Bioengineering on March 15th 1998.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prendergast, P.J., Beverland, D.E., Blayney, A.W. et al. Modelling medical devices: The application of bioenginering in surgery. Ir. J. Med. Sc. 168, 3–7 (1999). https://doi.org/10.1007/BF02939570

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02939570

Keywords