International Journal of Pancreatology

, Volume 4, Issue 4, pp 431–441 | Cite as

Effects of trypsin, chymotrypsin, and uncoupling on survival of isolated acinar cells from rat pancreas

  • Gerold Letko
  • Bernd Falkenberg
  • Wolfgang Wilhelm


To improve the knowledge of the very complex pathogenesis of acute pancreatitis, separated exocrine pancreatic cells were used as an experimental tool. Intact acinar cells were isolated from rat pancreas and the time course of their damage was studied in the presence of increasing activities of trypsin, chymotrypsin and, after, stepwise uncoupling of oxidative phosphorylation, by 2,4-dinitrophenol (DNP). With an increasing degree of uncoupling the half-life period of cells incubated was remarkably reduced. Extracellular trypsin, present in activities comparable with the endogenous trypsinogen content, was not effective in cell killing. Only when the trypsin activity was drastically enhanced was the rate of cell destruction accelerated. Compared with chymotrypsin, isolated acinar cells revealed some resistance to extracellular trypsin. But when the energy production was altered by partial uncoupling the susceptibility of these cells toward the action of trypsin was increased and their life time was remarkably reduced.

The potentiation of the effects of trypsin and uncoupling on cell viability demonstrates the contribution of an intact energy metabolism to the protective potential of acinar cells against further noxae.

Key Words

Acute pancreatitis cell damage energy metabolism pancreatic proteases pathogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Becker V, Wilde W. Pankreasschäden durch Trypsin in vitro. Klin. Wochenschr. 1963; 41: 73–75.PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson MC, Needleman SB, Gramatica L, Toronto IR, Briggs DR. Further inquiry into the pathogenesis of acute pancreatitis. Arch. Surg. 1969; 99: 185–192.PubMedGoogle Scholar
  3. 3.
    Adler G, Kern HF, Scheele GA. Experimental models and concepts in acute pancreatitis. Go VLW, Broke FP, DiMagno EP, Gardner JD, Lebenthal E, Scheele GA, eds., The exocrine pancreas: Biology, Pathobiology, and Diseases. Raven Press, NY, 1986: 407–421.Google Scholar
  4. 4.
    Grant D. Acute necrotising pancreatitis—a role for enterokinase. Int. J. Pancreatol. 1986; 1: 167–183.PubMedGoogle Scholar
  5. 5.
    Letko G, Sokolowski A, Spormann H, Heinrich P. A hierarchic approach for experimental investigations into the pathogenesis of acute pancreatitis. Dtsch. Z. Verdau, u. Stoffwechselkr. 1985; 45: 59–67.Google Scholar
  6. 6.
    Letko G, Spormann H, Sokolowski A, Schulz H-U. Pancreatic acinar cells: isolation, characterization and application in physiologic and pathophysiologic studies, with special reference to acute pancreatitis. Exp. Pathol. 1988, in press.Google Scholar
  7. 7.
    Schulz H-U, Letko G, Hass, H-J, Spormann H, Kemnitz P, Burger P, Wendt U. Effects of pancreatic acinar cell surface antibodies and complement on isolated rat acinar cells in vitro. Virchows Archiv B Cell Pathol. 1988, in press.Google Scholar
  8. 8.
    Singer, MV, Layer P, Goebell H. Role of pancreatic enzymes in acute pancreatitis. Malfertheiner P, Ditschuneit H. eds., Diagnostic Procedures in Pancreatic Disease, Springer- Verlag, Berlin, 1986: 67–74.Google Scholar
  9. 9.
    Warshaw AL. O'Hara PJ. Susceptibility of the pancreas to ischemic injury in shock. Ann. Surg. 1978; 188: 197–201.PubMedCrossRefGoogle Scholar
  10. 10.
    Letko G, Hass H-J, Spormann H. Wirkung von Anoxie und Entkopplung auf die Vitalität isolierter Azinuszellen aus Rattenpankreas. Z. Klin. Med. 1987; 42: 603–605.Google Scholar
  11. 11.
    Langner J, Wakil A, Zimmermann M, Ansorge S, Bohley P, Kirschke H. Wiederanders B. Aktivitätsbestimmung proteolytischer Enzyme mit Azokasein als Substrat. Acta Biol. Med. Germ. 1973; 31: 1–18.PubMedGoogle Scholar
  12. 12.
    Rinderknecht H. Activation of pancreatic zymogens. Normal activation, premature intrapancreatic activation, protective mechanism against inappropriate activation. Dig. Dis. Sci. 1986; 31: 314–321.PubMedCrossRefGoogle Scholar
  13. 13.
    Koike H, Steer ML, Meldosi J. Pancreatic effects of ethionine: blockade of exocytosis and appearance of crinophagy and autophagy precede cellular necrosis. Am. J. Physiol. 1982; 242: G297-G307.PubMedGoogle Scholar
  14. 14.
    Scheele GA, Adler G, Kern HF. Role of lysosomes in the development of acute pancreatitis. Gyr K. Singer M. Sarles H. eds., Pancreatitis: Concepts and Classification. Elsevier, Amsterdam, 1984: 17–23.Google Scholar
  15. 15.
    Letko G, Falkenberg B. Wilhelm W. Isolated pancreatic acinar cells—a tool to study pathogenesis of acute pancreatitis. Ministry of Health GDR Ed., Medical Laboratory Diagnostics in Health Care. GDR-Belgian Medical Week, 6, 11/9/1987 in Dresden, Dresden 1988, in press.Google Scholar
  16. 16.
    Popper HL, Necheles H. Russell KC. Transition of pancreatic edema into pancreatic necroses. Surg. Gynec. Obstet. 1948; 87: 79–82.PubMedGoogle Scholar
  17. 17.
    Bershadsky AD. Gelfand VI. Role of ATP in the regulation of stability of cytoskeletal structures. Cell. Biol. Int. Repo. 1983; 7: 173–187.CrossRefGoogle Scholar
  18. 18.
    Hinshaw DB, Sklar LA, Bohl B, Schraufstatter IU, Hyslop PA, Rossi, MW, Spragg RG, Cochrane CG. Cytoskeletal and morphology impact of cellular oxidant injury. Am. J. Pathol. 1986; 123: 454–464.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1989

Authors and Affiliations

  • Gerold Letko
    • 1
  • Bernd Falkenberg
    • 1
  • Wolfgang Wilhelm
    • 1
  1. 1.Division of Experimental Surgery, Clinic of SurgeryMedical Academy of Magdeburg, LeipzigerMagdeburgGDR

Personalised recommendations