Advertisement

International Journal of Pancreatology

, Volume 4, Issue 4, pp 383–390 | Cite as

The effects of nafamostat mesilate (FUT-175) on caerulein-induced acute pancreatitis in the rat

  • James R. Wisner
  • Susumu Ozawa
  • Ian G. Renner
Article
  • 34 Downloads

Summary

We examined the ability of a highly potent synthetic protease inhibitor, nafamostat mesilate (FUT-175), to protect the rat pancreas against AP induced by a supramaximal dose of caerulein (CR). Rats received a 6-h, continuous intravenous (iv) infusion of either CR alone or CR + a 6-h infusion of either 2.5, 5.0, 10.0, 25.0, or 50.0 mg of FUT-175/kg/h. Pancreas weights and serum chymotrypsinogen concentrations were significantly elevated by approximately 85 and 75%, respectively, over values in saline infused rats. Pancreas weights in rats treated with CR+ FUT-175 at doses from 2.5–25.0 mg/kg/h were significantly reduced by approximately 20% compared to rats given CR along, and histology showed a reduction in the extent and size of acinar cell vacuolization and reduced interstitial edema compared to rats treated with CR alone. Serum chymotrypsinogen concentrations in rats treated with CR and either 5.0 or 10.0 mg of FUT-175/kg/h were significantly lower than in rats given CR alone. Significant mortality occurred in rats infused with FUT-175 at doses of either 25.0 or 50.0 mg of FUT-175/kg/h. These data indicate that serine proteases appear to be involved in the pathogenesis of CR induced AP in rats and that FUT-175 administered in low doses (2.5–10.0 mg/kg/h) provides significant protection against this form of pancreatitis.

Key Words

Acute pancreatitis caerulein FUT-175 protection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scheele G. Biochemical concepts and markers in acute pancreatitis. Gyr K, Singer M, Singer M, Sarles H. eds., Pancreatitis: concepts and classification. Elsevier, Amsterdam, 1984: 119–125.Google Scholar
  2. 2.
    Adler G, Kern HF, Scheele GA. Experimental models and concepts in acute pancreatitis. Go VLW, Gardner JD, Brooks FP, Lebenthal E, DiMagno EP, Scheele GA. eds., The exocrine pancreas: biology, pathobiology, and diseases. Raven Press, New York, 1986: 407–421.Google Scholar
  3. 3.
    Adler G, Hupp T, Kern HF. Alteration of membrane fusion as a cause of acute pancreatitis in the rat. Dig. Dis. Sci. 1982; 27: 993–1002.PubMedCrossRefGoogle Scholar
  4. 4.
    Watanabe O, Baccino FM, Steer ML, Meldolesi J. Effects of supramaximal caerulein stimulation on the ultrastructure of the rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis. Amer. J. Physiol. 1984; 246; G457-G467.PubMedGoogle Scholar
  5. 5.
    Steer ML, Meldolesi J, Figarella. C. Pancreatitis: the role of lysosomes. Dig. Dis. Sci. 1984; 29; 934–938.PubMedCrossRefGoogle Scholar
  6. 6.
    Adler G, Hahn C, Kern HF, Rao KN. Cerulein-induced acute pancreatitis in rats: increased lysosomal enzyme activity and autophagocytosis. Digestion 1985; 32: 10–18.PubMedGoogle Scholar
  7. 7.
    Steer ML, Meldolesi J. The cell biology of experimental pancreatitis. New EngL J. Med. 1987; 316: 144–150.PubMedGoogle Scholar
  8. 8.
    Wisner JR Jr., Renner IG, Grendell JH, Niederau C, Ferrell LD. Gabexate mesilate (FOY) protects against ceruletide-induced acute pancreatitis in the rat. Pancreas 1987; 2: 181–186.PubMedCrossRefGoogle Scholar
  9. 9.
    Iwaki M, Ozeki M, Sato T, Suzuki K, Motoyoshi A, Suzuki S, Fujita S, Aoyama T. Pharmacological studies of FUT-175, nafamstat mesilate. II. Effects on experimental acute pancreatitis. Folia Pharmacol. Japon. 1984; 84: 363–372.Google Scholar
  10. 10.
    Iwaki M, Ino Y, Motoyoshi A, Ozeki M, Sato T, Kurumi M, Aoyama Y. Pharmacological studies of FUT-175, nafamostat mesilate. V. Effects on the pancreatic enzymes and experimental acute pancreatitis in rats. Japan. J. Pharmacol. 1986; 41: 155–162.CrossRefGoogle Scholar
  11. 11.
    Hummel BC. A modified spectrophotometric determination of chymotrypsin, trypsin and thrombin. Can. J. Biochem. 1959; 37: 1393–1399.PubMedCrossRefGoogle Scholar
  12. 12.
    Wisner JR Jr., McLaughlin RE, Rich KA, Ozawa S, Renner IG. Effects of L-364,718, a new cholecystokinin receptor antagonist, on camostate-induced growth of the rate pancreas. Gastroenterol. 1988; 94: 109–113.Google Scholar
  13. 13.
    Adler HL, Roessler EB. Introduction to probability and statistics. 4th ed., W. H. Freeman, San Francisco, 1968.Google Scholar
  14. 14.
    Steele RGD, Torie JH. Principles and procedures of statistics. McGraw-Hill, New York, 1960.Google Scholar
  15. 15.
    Nakahara H. Inhibitory effects of aprotinin and gabexate mesilate on human plasma kallikrein. Arzneimittelforsch. 1983; 33: 969–971.PubMedGoogle Scholar
  16. 16.
    Aoyama T, Ino Y, Ozeki M, Oda M, Sato T, Koshiyama Y, Suzuki S, Fujita M. Pharmacological studies of FUT-175, nafamstat mesilate. I. Inhibition of protease activity ofin vitro andin vivo experiments. Japan. J. Pharmacol. 1984; 35: 203–227.Google Scholar
  17. 17.
    Fujii S, Hitomi Y. New synthetic inhibitors of C1r, C1-esterase, thrombin, kallikrein and trypsin. Biochem. Biophys. Acta 1981; 661: 342–345.PubMedGoogle Scholar
  18. 18.
    Fishbein R, Murphy GP, Wilder RJ. The pleuropulmonary manifestations of pancreatitis. Dis. Chest 1962; 41: 392–397.PubMedCrossRefGoogle Scholar
  19. 19.
    Carey LC. Extra-abdominal manifestations of acute pancreatitis. Surgery 1979; 86: 337–342.PubMedGoogle Scholar
  20. 20.
    Onstad GR, Bubrick M P. Pathophysiology. Toledo-Pereya LH. ed., The pancreas: principles and medical and surgical practice. Wiley, New York, 1985: 97–116.Google Scholar
  21. 21.
    Renner IG, Savage WT, Pantoja JL, Renner VJ. Death due to acute pancreatitis: a retrospective analysis of 405 autopsy cases. Dig. Dis. Sci. 1985; 30: 1005–1018.PubMedCrossRefGoogle Scholar
  22. 22.
    Sato K, Watanabe K, Terasawa K, Yokomoto Y, Nagai N, Otani K. Acute toxicity studies of FUT-175 (Nafamstat mesilate) in mice and rats. Principle and Clinics (Japan.) 1984; 18: 227–234.Google Scholar
  23. 23.
    Goke B, Stockmann, Muller R, Lankisch PG, Creutzfeldt W. Effect of a specific serine protease inhibitor on the rat pancreas: systemic administration of camostate and exocrine pancreatic secretion. Digestion 1984; 30: 171–178.PubMedCrossRefGoogle Scholar
  24. 24.
    Adler G, Rausch U, Weidenbach F, Arnold R, Kern HF. General and selective inhibition of pancreatic enzyme discharge using a proteinase inhibitor (FOY-305). Klin. Wochenschr. 1984; 62: 406–411.PubMedCrossRefGoogle Scholar
  25. 25.
    Muramatu M, Fujii S. Inhibitory effects of omega-guanidino acid esters on trypsin, plasmin, plasma kallikrein and thrombin. Biochem. Biophys. Acta 1972; 268: 221–224.PubMedGoogle Scholar
  26. 26.
    Tamura Y, Hirado M, Okamura K, Minato Y, Fujii S. Synthetic inhibitors of trypsin, plasmin, kallikrein, thrombin, C(1r)and C(1)-esterase. Biochem. Biophys. Acta 1977; 484: 417–422.PubMedGoogle Scholar
  27. 27.
    Takasugi S, Toki N. Inhibitory effects of native and synthetic protease inhibitors on plasma proteases in acute pancreatitis. Hiroshima J. Med. Sci. 1980; 29: 189–194.PubMedGoogle Scholar
  28. 28.
    Guice KS, Miller DE, Oldham KT, Townsend CM, Thompson JC. Superoxide dismutase and catalase: a possible role in established pancreatitis. Amer. J. Surg. 1986; 151: 163–169.PubMedCrossRefGoogle Scholar
  29. 29.
    Wisner JR Jr., Renner IG. Allopurinol attenuates caerulein-induced acute pancreatitis in the rat. Gut 1988; 29: 926–929.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1989

Authors and Affiliations

  • James R. Wisner
    • 1
  • Susumu Ozawa
    • 1
  • Ian G. Renner
    • 1
  1. 1.Department of Medicine, Section of GastroenterologyUniversity of Southern California School of MedicineLos Angeles

Personalised recommendations