Skip to main content
Log in

Martingales with given maxima and terminal distributions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let μ be any probability measure onR with λ |x|dμ(x)<∞, and let μ* denote its associated Hardy and Littlewood maximal p.m. It is shown that for any p.m.v for which μ<ν<μ* in the usual stochastic order, there is a martingale (X t)0≦t≦1 for which sup0≦t≦1 X t andX 1 have respective p.m. 'sv and μ. The proof uses induction and weak convergence arguments; in special cases, explicit martingale constructions are given. These results provide a converse to results of Dubins and Gilat [6]; applications are made to give sharp martingale and ‘prophet’ inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Azema and M. Yor,Une solution simple au probleme de Skorokhod, inSem Probab. XIII, Lecture Notes in Math. 721, Springer-Verlag, New York, 1979, pp. 90–115.

    Chapter  Google Scholar 

  2. J. Azema and M. Yor,Le probleme de Skorokhod: complements a l'expose precedent, inSem. Probab. XIII, Lecture Notes in Math. 721, Springer-Verlag, New York, 1979, pp. 625–633.

    Google Scholar 

  3. D. P. Bertsekas and S. E. Shreve,Stochastic Optimal Control: The Discrete Time Case, Academic Press, New York, 1978.

    MATH  Google Scholar 

  4. P. Billingsley,Convergence of Probability Measures, Wiley, New York, 1968.

    MATH  Google Scholar 

  5. D. Blackwell and L. E. Dubins,A converse to the dominated convergence theorem, Illinois J. Math.7 (1963), 508–514.

    MATH  MathSciNet  Google Scholar 

  6. L. E. Dubins and D. Gilat,On the distribution of maxima of martingales, Proc. Am. Math. Soc.68 (1978), 337–338.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. E. Dubins and J. Pitman,A maximal inequality for skew fields, Z. Wahrscheinlichkeitstheor. Verw. Geb.52 (1980) 219–227.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. N. Ethier and T. G. Kurtz,Markov Processes Characterization and Convergence, Wiley, New York, 1986.

    MATH  Google Scholar 

  9. D. Gilat,On the ratio of the expected maximum of a martingale and the L p-norm of its last term, Isr. J. Math.63 (1988), 270–280.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. H. Hardy and J. E. Littlewood,A maximal theorem with function theoretic applications, Acta. Math.54 (1930), 81–116.

    Article  MathSciNet  Google Scholar 

  11. T. P. Hill and R. P. Kertz,Stop rule inequalities for uniformly bounded sequences of random variables, Trans. Am. Math. Soc.278 (1983), 197–207.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. D. Jacka,Doob's inequality revisited: a maximal H 1-embedding, Stoch. Processes Appl,29 (1988), 281–290.

    Article  MATH  MathSciNet  Google Scholar 

  13. I. Karatzas and S. E. Shreve,Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1988.

    MATH  Google Scholar 

  14. U. Krengel and L. Sucheston,Semiamarts and finite values, Bull. Am. Math. Soc.83 (1977), 745–747.

    Article  MATH  MathSciNet  Google Scholar 

  15. U. Krengel and L. Sucheston,On semiamarts, amarts, and processes with finite value, inAdvances in Probability, Vol. 4, Marcel Dekkar, New York, 1978, pp. 197–266.

    Google Scholar 

  16. P. A. Meyer,Probability and Potentials, Blaisdell Publ. Co., Waltham, Mass., 1966.

    MATH  Google Scholar 

  17. E. Perkins,The Cereteli—Davis solution to the H 1-embedding problem and an optimal embedding in Brownian motion, inSeminar on Stochastic Processes, Birkhäuser, Boston, 1985.

    Google Scholar 

  18. V. Pestien,An extended Fatou equation and continuous-time gambling, Adv. Appl. Prob.14 (1982), 309–323.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. I. Resnick,Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, New York, 1987.

    MATH  Google Scholar 

  20. G. R. Shorack and J. A. Wellner,Empirical Processes with Applications to Statistics, Wiley, New York, 1986.

    Google Scholar 

  21. D. Stoyan,Comparison Methods for Queues and Other Stochastic Models (D. J. Daley, ed.), Wiley, New York, 1983.

    Google Scholar 

  22. V. Strassen,The existence of probability measures with given marginals, Ann. Math. Statist.36 (1965), 423–439.

    Article  MATH  MathSciNet  Google Scholar 

  23. D. P. van der Vecht,Inequalities for Stopped Brownian Motion, C. W. I. Tract 21, Mathematisch Centrum, Amsterdam, 1986.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NSF grants DMS-86-01153 and DMS-88-01818.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kertz, R.P., Rösler, U. Martingales with given maxima and terminal distributions. Israel J. Math. 69, 173–192 (1990). https://doi.org/10.1007/BF02937303

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02937303

Keywords

Navigation