Skip to main content
Log in

Phencyclidine

Physiological actions, interactions with excitatory amino acids and endogenous ligands

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Phencyclidine (PCP) produces many profound effects in the central nervous system. PCP has numerous behavioral and neurochemical effects such as inhibiting the uptake and facilitating the release of dopamine, serotonin, and norepinephrine. PCP also interacts with sigma, mu opioid, muscarinic, and nicotinic receptors. However, the psychotomimetic effects induced by PCP are believed to be mediated by specific PCP receptors, where PCP binds with greater potency than sigma compounds. Electrophysiological, behavioral, and neurochemical evidence strongly suggests that at least some of the many PCP actions result from antagonism of excitatory amino acid-induced responses via PCP receptors. The recent isolation and partial characterization of the alpha and beta endopsychosins and the identification of other endogenous ligands for the PCP and sigma receptors, is another promising area of research in the elucidation of the physiological role of an endogenous PCP and sigma system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aanosen L. M. and Wilcox G. L. (1987) Phencycliddine selectively blocks a spinal action ofN-methyl-d-aspartate in mice.Neurosci. Lett. 67, 191–197.

    Article  Google Scholar 

  • Adey W. R. and Dunlop L. W. (1960) The action of certain cyclohexamines on the hippocampal system during approach performance in the cat.J. Pharmacol. Exp. Ther. 130, 418–426.

    PubMed  CAS  Google Scholar 

  • Aguayo L. G., Warnick J. E., Maayani S., Glick S. D., Weinstein H., and Alburquerque E. X. (1982) Site of action of phencyclidine. IV. Interaction of phencyclidine and its analogues on ionic channels of the electrically excitable membrane and nicotinic receptor; implications for behavioral effects.Mol. Pharmacol. 21; 637–647.

    PubMed  CAS  Google Scholar 

  • Albuquerque E. X., Tsai M-C., Aronstam R. S., Witkop B., Eldefrawi A. T., and Eldefrawi M. E. (1980a) Phencyclidine interactions with the ionic channel of the acetylcholine receptor and electrogenic membrane.Proc. Natl. Acad. Sci. USA 77, 1224–1228.

    Article  PubMed  CAS  Google Scholar 

  • Albuquerque E. X., Tsai M.-C., Aronstam R. S., Eldefrawi A. T., and Eldefrawi M. W. (1980b) Sites of action of phencyclidine. II. Interaction with the ionic channel of the nicotinic receptor.Mol. Pharmacol. 18, 167–178.

    PubMed  CAS  Google Scholar 

  • Albuquerque E. X., Aguayo L. G., Warnick J. W., Weinstein H., Glick S. D., Maayani S., Ickowicz R. K., and Blaustein M. P. (1981) The behavioral effects of phencyclidines may be due to their block-ade of potassium channels.Proc. Natl. Acad. Sci. USA 78, 7792–7796.

    Article  PubMed  CAS  Google Scholar 

  • Allen R. M. and Young S. J. (1978) Phencyclidine-induced psychosis.Am. J. Psychiatr. 135, 1081.

    PubMed  CAS  Google Scholar 

  • Altura B. T., Quirion R., Pert C. B., and Altura B. M. (1983) Phencyclidine (“angel dust”) analogs and sigma opiates cause cerebral arterial spasm.Proc. Natl. Acad. Sci. USA 80, 865–869.

    Article  PubMed  CAS  Google Scholar 

  • Amrick C. L., Bernard P. S., and Bennett D. A. (1986) A comparison of PCP-like compounds in two in vivo models for NMDA antagonism.The Pharmacologist 28, 114.

    Google Scholar 

  • Anis N. A., Berry S. C., Burton N. R., and Lodge D. (1983a) The dissociative anaesthetics ketamine and phencyclidine, selectively inhibit excitation of central mammalian neurons byN-methylaspartate.Br. J. Pharmacol. 79, 565–575.

    PubMed  CAS  Google Scholar 

  • Anis N. A., Berry S. C., Burton, N. R., and Lodge D. (1983b) Cyclazocine, like ketamine, blocksN-methylaspartate actions on spinal neurones in cat and rat.J. Physiol. 338, 38–38P.

    Google Scholar 

  • Aronstam R. S., Eldefrawi M. E., Eldefrawi A. T., Albuquerque E. X., Jim K. F., and Triggle D. J. (1980) Sites of action of phencyclidine. III. Interactions with muscarinic receptors.Mol. Pharmacol. 18, 179–184.

    PubMed  CAS  Google Scholar 

  • Ary T. E. and Komiskey H. L. (1982) Phencyclidine-induced release of [3H]dopamine from chopped striatal tissue.Neuropharm. 21, 639–645.

    Article  CAS  Google Scholar 

  • Bartschat D. K. and Blaustein M. P. (1986) Phencyclidine in low doses selectively blocks a presynaptic voltage regulated potassium channel in rat brain.Proc. Natl. Acad. Sci. USA 83, 189–192.

    Article  PubMed  CAS  Google Scholar 

  • Bayorh M. A., Lozovsky D., Rice K. C., Burke T. R. Jr., and Kopin I. J. (1983) Cardiovascular and plasma prolactin responses to stereoisomers of phencyclidine.Pharmacolo. Biochem. Behav. 19, 365–367.

    Article  CAS  Google Scholar 

  • Becker C. E. (1969) Sernylan inhibition of primate serum cholinesterases.Clin. Chem. Abst. 41, 780–781.

    Google Scholar 

  • Benishin C. G., Pearce L. B., and Cooper J. R. (1986) Isolation of a factor (substance B) that antagonizes presynaptic modulation.J. Pharmacol. Exp Ther. 239, 185–191.

    PubMed  CAS  Google Scholar 

  • Bernard P. S., and Bennett D. A. (1986) Similarity of behavioral effects produced by anN-methyl-d-aspartate antagonist and phencyclidine-type drugs.Soc. Neurosci. Abst. 12, 60.

    Google Scholar 

  • Berry S. C., Burton N. R., Anis, N. A., and Lodge D. (1983), Stereoselective effects of two phencylcidine derivatives onN-methylaspartate excitation of spinal neurones in the cat and rat.Eur. J. Pharmacol. 261–267.

  • Berry S. C., Anis N. A., and Lodge D. (1984a) The effect of the dioxolanes on amino acid induced excitation in the mammalian spinal cord.Brain Res. 307, 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Berry S. C., Dawkins S. L., and Lodge D. (1984d) Comparison ofo- and k-opiate receptor ligands as excitatory amino acid antagonists.Brit. J. Pharmacol. 83, 179–185.

    CAS  Google Scholar 

  • Berry S. C., and Lodge D. (1984) Benz(f)isoquinolines as excitatory amino acid antagonists: an indication of their mechanism of action?.Biochem. Pharmacol. 33, 3829–3832.

    Article  PubMed  CAS  Google Scholar 

  • Bickford P. C., Palmer M. R., Rice K. C., Hoffer B. J., and Freedman R. (1984) Electrophysiological effects of phencyclidine on rat hippocampal pyramidal neurons.Neuropharm. 20, 733–742.

    Article  Google Scholar 

  • Blake J. C., Davies S. N., Church J., Martin D., and Lodge D. (1986) 2-methyl-3-3-diphenyl-3-propanolamine (2-MDP) selectively antagonizesN-methylaspartate (NMA).Pharmacol. Biochem. Behav. 24, 23–25.

    Article  PubMed  CAS  Google Scholar 

  • Bolger G. T., Rafferty M. F., and Skolnick P. (1986a) Enhancement of brain calcium antagonist binding by phencyclidine and related compounds.Pharmacol. Biochem. Behav. 24, 417–423.

    Article  PubMed  CAS  Google Scholar 

  • Bolger G. T., Rafferty M. F., Weissman B. A., Rice K. C., and Skolnick P. (1986b) Acylating phencyclidines irreversibly enhance brain calcium antagonist binding.Pharmacol. Biochem. Behav. 25, 51–57.

    Article  PubMed  CAS  Google Scholar 

  • Bowyer J. F., Spuhler K. P., and Weiner N. (1984) Effects of phencyclidine, amphetamine, and related compounds on dopamine release from uptake into striatal synaptosomes.J. Pharmacol. Exp. Ther. 229, 671–680g.

    PubMed  CAS  Google Scholar 

  • Brady K. T., Balster R. L., and May E. L. (1982) Stereoisomers ofN-allylnormetazocine: Phencyclidine-like behavioral effects in squirrels, monkeys and rats.Sci. 215, 178–180.

    Article  CAS  Google Scholar 

  • Brown H. and Bass W. C. (1976) Effect of drugs on visually controlled avoidance behavior in rhesus monkeys: a psychophysiological analysis.Psychopharmacol. 11, 143–153.

    Article  Google Scholar 

  • Burns R. S. and Lerner S. E. (1976) Perspectives: Acute phencyclidine intoxication.Clin. Toxicol. 9, 477–501.

    Article  PubMed  CAS  Google Scholar 

  • Changeux J. P., Devillers-Thiery A., and Chemouilli P. (1984) Acetylcholine receptor: an allosteric protein.Science 2251, 1335–1345.

    Article  Google Scholar 

  • Chen G. C., Ensor C., Russell D., and Bohner B. (1959) The pharmacology of 1-(1-phenylcyclohexyl) piperidine-HCl.J. Pharmacol. Exp. Ther. 127, 241–250.

    PubMed  CAS  Google Scholar 

  • Church J., Lodge D., and Berry S. C. (1985), Different effects of dextrorphan and levorphanol on the excitation of rat spinal neurons by amino acidsEur. J. Pharmacol. 111, 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Cohen B. D., Luby E. D., Rosenbaum E. D., and Gottlieb (1960) Combined sernyl and sensory deprivation.Comp. Psychiatr. 1, 135.

    Article  Google Scholar 

  • Compton R. P., Kreiter P. A., Smith R. G., Harken R. D., and Monahan J. B. (1987a) Determination of the pharmacokinetics of 2-amino-7-phosphonoheptanoate in plasma and cerebrospinal fluid. The Third International Syposium on the Neuronal Control of Bodily Functions, in press.

  • Compton R. P., Contreras P. C., O’Donohue T. L., and Monahan J. B. (1987b) TheN-methyl-d-aspartate antagonist, 2-amino-7-phosphonoheptanoate, produces phencyclidine-like behavioral effects in rats.Eur. J. Pharmacol.,136, 133–134.

    Article  PubMed  CAS  Google Scholar 

  • Compton R. P., Hood W. F., Contreras P. C.,

  • Comtreras P. C., Quirion R., and O’Donohue T. L. (1985) Comparison of the binding and regional distribution of sigma opioid and phencyclidine receptors.Soc. Neurosci. Abst. 11, 583.

    Google Scholar 

  • Contreras P. C., Quirion R., and O’Donohue T. L. (1986a) Autoradiographic distribution of phencyclidine receptors in the rat brain using [3H]1-(1-(2-thienyl)cyclohexyl) piperidine [3H-TCP].Neurosci. Lett. 67, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Contreras P. C., Rice K. C., Jacobson A. E., and O’Donohue T. L. (1986b) Stereotyped behavior correlates better than ataxia with phencyclidine-receptor interactions.Eur. J. Pharmacol. 121, 9–18.

    Article  PubMed  CAS  Google Scholar 

  • Contreras P. C., DiMaggio D. A., Quirion R., and O’Donohue T. L. (1986c) An endogenous peptide ligand for the PCP/sigma opioid receptor, in Neural and endocrine peptides and receptors, Moody T., ed., Plenum, NY, pp. 1–13.

    Google Scholar 

  • Contreras P. C., Johnson S., Freedman R., Hoffer B., Olsen K., Rafferty M. F., Lessor R. A., Rice K. C., Jacobsen A. E., and O’Donohue T. L. (1986b) Metaphit, an acylating ligand for phencyclidine receptors: characterization of in vivo actions in the rat.J. Pharmacol. Exp. Ther. 238, 1101–1107.

    PubMed  CAS  Google Scholar 

  • Contreras P. C., Quirion R., Gehlert D. R., Contreras M. L., and O’Donohue T. L. (1987a) Autoradiographic distribution of non-dopaminergic sites labeled by [3H]-haloperidol in rat brain.Neurosci. Lett. 75, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Contreras P. C., Lair C. C., Compton R. P., Monahan J. B., and O’Donohue (1987b) Comparison of behavioral effects of selective PCP and sigma opioid ligands.ASPET Abst., in press.

  • Contreras P. C., DiMaggio D. A., and O’Donohue T. L. (1987c) An endogenous ligand for the sigma opioid binding site.Synapse 1, 57–61.

    Article  PubMed  CAS  Google Scholar 

  • Croucher M. J., Collins J. F., and Meldrum B. S. (1982) Anticonvulsant action of excitatory amino acid antagonists.Science 216, 899–901.

    Article  PubMed  CAS  Google Scholar 

  • Czuczwar S. J. and Meldrum B. S. (1982) Protection against chemically induced seizures by 2-amino-7-phosphonohepatonic acid.Eur. J. Pharmacol. 83, 335–338.

    Article  PubMed  CAS  Google Scholar 

  • DeSarro G., Meldrum B. S., and Reavill C. (1985) Anticonvulsant action of 2-amino-7-phosphonohepatonoic acid in the rat substantia nigra.Eur. J. Pharmacol. 106, 175–179.

    Article  Google Scholar 

  • Deutsch D. G., Koul O., and Kersten R. (1984) Phencyclidine and analogs. Effects on brain protein synthesis.J. Neurochem. 42, 407–411.

    Article  PubMed  CAS  Google Scholar 

  • DiMaggio D. A., Contreras P. C., Quirion R., and O’Donohue T. L. (1986) Isolation and identification of an endogenous ligand for the phencyclidine receptor. inPhencyclidine: An update, Clouet D. H., ed., NIDA, MD, pp. 24–37.

    Google Scholar 

  • DiMaggio D. A., Contreras P. C., and O’Donohue T. L. (1987) Distinct endogenous ligands for PCP and sigma opioid receptors. Tenth Am. Peptide Symp., in press.

  • Domino E. F., Caldwell D. F., and Henke R. (1965) Effects of psychoactive agents on acquisition of conditioned pole jumping in rats.Psychopharmacol. 8, 285–289.

    Article  CAS  Google Scholar 

  • Domino E. F. and Wilson A. E. (1972) Psychotropic drug influences on brain acetylcholine utilization.Psychopharmacol. 25, 291–298.

    Article  CAS  Google Scholar 

  • Eldefrawi M. E., Eldefrawi A. T., Aronstam R. S., Maleque M. A., Warnick J. E., and Albuquerque E. X. (1980) [3H] Phencyclidine: a probe for the ionic channel of the nicotinic receptor.Proc. Natl. Acad. Sci. USA 77, 7458–7462.

    Article  PubMed  CAS  Google Scholar 

  • Eldefrawi A. T., Miller E. R., Murphy D. L., and Eldefrawi, M. W. (1982a) [3H]Phencyclidine interactions with the nicotinic acetycholine receptor channel and its inhibition by psychotropic, antipsychotic, opiate, antidepressant, antibiotic, antiviral, and antiarrythmic drugs.Mol. Pharmacol. 22, 72–81.

    PubMed  CAS  Google Scholar 

  • Eldefrawi M. E., El-Fakahany E. F., Murphy D. L., and Eldefrawi A. T., and Triggle D. J. (1982b) High affinity binding of phencyclidine (PCP) to crayfish muscle. Displacement by calcium antagonists.Biochem. Pharmacol. 31, 2549–2552.

    Article  PubMed  CAS  Google Scholar 

  • El-Fakahany E. E., Eldefrawi A. T., Murphy D. L., Aguayo L. G., Triggle D. J., Albuquerque E. X., and Eldefrawi M. E. (1984) Interactions of phencyclidine with crayfish muscle membranes: sensitivity to calcium channel antagonists and other drugs.Mol. Pharmacol. 25L, 369–378.

    Google Scholar 

  • Epstein P. M. and Lambert J. J. (1984) Displacement of [3H] Phencyclidine binding toTorpedo electric organ membrane by calcium channel antagonists.Biochem. Pharmacol. 33, 4087–4089.

    Article  PubMed  CAS  Google Scholar 

  • Fagg G. E. and Baud J. (1986) A1 acidic amino receptors; recognition site specificity.Br. J. Pharmacol. 88, 458P.

    Google Scholar 

  • Fauman M. A., and Fauman B. J. (1981) Chronic phencyclidine (PCP) abuse: a psychiatric perspective.PCP (Phencyclidine):Historical and Current Perspective, Domino E. F. ed. NPP Books, Ann Arbor, MI, p. 419.

    Google Scholar 

  • Fessler R. G., Sturgeon R., and Meltzer H. Y. (1979) Phencyclidine-induced locomotor activity in the rat is blocked by 6-hydroxydopamine lesions of the nucleus accumbens: comparison to other psychomotor stimulants.Psychopharmacol. 82, 83–88.

    Google Scholar 

  • Foster A. C., Gill R., Iverson L. L., and Woodruff G. N. (1986) Systemic administration of MK-801 protects against ischaemia-induced hippocampal neurodegeneration in the gerbil.Br. J. Pharmacol. 90, 9P.

    Google Scholar 

  • Garey R. E. and Heath R. C. (1976) The effects of phencyclidine on the uptake of3H-catecholamines by rat striatal and hypothalamic synaptosomes.Life Sci. 18, 1105–1110.

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt S. C., Bernard P. S., Pastor G., and Boast C. A. (1986) Effects of systemic administration of the NMDA antagonist, CPP, on ischemic brain damage in gerbils.Soc. Neurosci. Abst. 12, 59.

    Google Scholar 

  • Gintzler A. R., Zukin R. S., and Zukin S. R. (1982) Effects of phencyclidine and its derivatives on enteric neurones.Br. J. Pharmacol. 75, 261–267.

    PubMed  CAS  Google Scholar 

  • Greifenstein F. E., Devault M., Yoshitake J., and Gajewski J. E. (1958) A study ofl-arylcyclohexylamine for anesthesia.Anesthesia Anesth. Analg. 37, 283–294.

    CAS  Google Scholar 

  • Gundlach A. L., Largent B. L., and Synder S. H. (1985) Phencyclidine and sigma opiate receptors in the brain: biochemical and autoradiographical differentiation.Eur. J. Pharmacol. 113, 465.

    Article  PubMed  CAS  Google Scholar 

  • Hadley R. W. and Hume J. R. (1986) Actions of phencyclidine on the action potential and membrane currents of single guinea-pig myocytes.J. Pharmacol. Exp. Ther. 237, 131–136.

    PubMed  CAS  Google Scholar 

  • Haertzen C. (1974) Subjective effects of narcotic antagonists,Narcotic Antagonists, Braude, M. D., Harris, L. S., May, E. L., Smith, J. P., Villarreal, J. E., eds., Raven Press, NY, p. 383.

    Google Scholar 

  • Haggerty G. C., Richter J. A., and Forney R. B. (1983) The effects of an in vivo administration of phencylcidine on sodium-dependent high affinity choline uptake in rat hippocampus and striatum in vitro.Neuropharmacol. 22, 1389–1395.

    Article  CAS  Google Scholar 

  • Handelmann G. E., Contreras P. C. and O’Donohue T. L. (1987) Selective memory impairment by phencyclidine in rats.Eur. J. Pharmacol., in press.

  • Haring R., Kloog Y., and Sodolovsky M. (1984) Localization of phencyclidine binding sites on alpha and beta subunits of the nicotinic acetylcholine receptor from Torpedo Ocellata electric organ using azido phencyclidine.J. Neurochem. 4, 627–637.

    CAS  Google Scholar 

  • Harrison N. L. and Simmonds M. A. (1985) Quantitative studies on some antagonists ofN-methyl-d-aspartate in slices of rat cerebral cortex.Brit. J. Pharmacol. 84, 381–391.

    CAS  Google Scholar 

  • Hayes B. A. and Balstar R. L. (1985) Anticonvulsant properties of phencyclidine-like drugs in mice.Eur. J. Pharmacol. 117, 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Holtzman S. G. (1981) Phencyclidine-like discriminative effects of opioids in the rat.J. Pharmacol. Exp. Ther. 214, 614–619.

    Google Scholar 

  • Honey C. R., Miljkovic Z., and MacDonald J. F. Ketamine and phencyclidine cause a voltage-dependent block of responses tol-aspartic acid.Neurosci. Lett. 61, 135–139.

  • Itoh Y., Oishi R., Nishibori M., and Saeki K. (1985) Phencyclidine and the dynamics of mouse brain histamine.J. Pharmacol. Exp. Ther. 235, 788–792.

    PubMed  CAS  Google Scholar 

  • Itzhak Y. (1987) [3H] PCP-3-OH and (+) [3H] SKF 10,047 binding sites in rat brain membranes: evidence of multiplicity.Eur. J. Pharmacol. 136, 231–234.

    Article  PubMed  CAS  Google Scholar 

  • Johnston G. A. R. and Lodge D. ( 1983) Ketamine and magnesium selectively block theN-methylaspartate-evoked release of acetylcholine from rat cortex slices in vitro.J. Physiol. (Lond.)349, 15P.

    Google Scholar 

  • Kalandy R. R. J. and Karlin A. (1983) Reaction of quinacrine mustard with the acetylcholine receptor fromTorpedo californica: functional consequences and sites of labeling.J. Biol. Chem. 258, 6232–6242.

    Google Scholar 

  • Karpen J. W. and Hess G. P. (1986) Cocaine, phencycldine, and procaine inhibition of the acetylcholine receptor: characterization of the binding site stopped-flow measurements of receptor-controlled ion flux in membrane vesicles.Biochemistry 25, 1777–1785.

    Article  PubMed  CAS  Google Scholar 

  • Kesner R. P., Hardy J. D., and Calder L. D. (1981) Phencyclidine and behavior. I. Sensory-motor function, activity level, taste aversion, and water intake.Pharmacol. Biochem. Behav. 15, 713.

    Google Scholar 

  • Khansari N., Whitten H. D., and Fudenberg H. H. (1984) Phencyclidine-induced immunodepression.Science 225, 76–78.

    Article  PubMed  CAS  Google Scholar 

  • Kloog Y., Rehavi M., Maayani S. and Sokolovsky M. (1977) Anticholinesterase and antiacetylcholine activity ofl-phencyclohexamine derivatives.Eur. J. Pharmacol. 45, 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Koek W., Woods J. H., Rice K. C., Jacobson A. E., Huguenin P. N., and Burke T. R. Jr. (1984) Phencyclidine-induced catalepsy in pigeons: specificity and steroselectivity.Eur. J. Pharmacol. 45, 221–227.

    Google Scholar 

  • Koek W., Kleer E., Mudar P. J., and Woods J. H. (1986a) Phencyclidine-like catalepsy induced by the excitatory amino acid antagonistDL-2-amino-5-phosphonovalerate.Behav. Brain Res. 19, 257–259.

    Article  PubMed  CAS  Google Scholar 

  • Koek W., Woods J. H., and Ornstein P. (1986b) Phencyclidine-like behavioral effects in pigeons induced by systemic administration of the excitatory amino acid antagonist, 2-amino-5-phosphonovalerate.Life Sci. 39, 973–978.

    Article  PubMed  CAS  Google Scholar 

  • Koul O., March J. E., Sarma R., Griffiths C., and Deutsch D. G. (1986) Effect of phencyclidine on the metabolism of individual brain proteins.J. Neurochem. 46, 470–474.

    Article  PubMed  CAS  Google Scholar 

  • Largent B. L., Gundlach A. L., and Snyder S. H. (1984) Psychotomimetic opiate receptors labeled and visualized with(+)-[3H]3-(3-hydroxyphenyl)N-l-propyl) piperdine.Proc. Natl. Acad. Sci. USA 81, 4983–4987.

    Article  PubMed  CAS  Google Scholar 

  • Laccese A. P., Marquis K. L., Mattia A., and Moreton J. E. (1986) The convulsant and anticonvulsant effects of phencyclidine (PCP) and PCP analogues in the rat.Behav. Brain Res. 19, 163–169.

    Article  Google Scholar 

  • Lees H. (1962) The effect in vitro of 1-(l-phencyclohexyl)piperdine hydrochloride (Sernyl) on oxidation by liver homogenates and mitochondria of rat.Biochem. Pharmacol. 11, 1115–1122.

    Article  PubMed  CAS  Google Scholar 

  • Lees H. (1968) The effects of 1-(l-phencyclohexyl) piperidione HCl, (phenylcyclidine, Sernyl) on respiratory related reaction of liver mitochondria in vitro.Biochem. Pharmacol. 17, 845–848.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann J. and Scatton B. (1982) Characterization of the excitatory amino acid receptor-mediated release of [3H] acetylcholine from rat striatal slices.Brain Res. 252, 77–89.

    Article  PubMed  CAS  Google Scholar 

  • Leonard B. E. and Tonge (1970) Some effect of a hallucinogneic drug (phencyclidine).Life Sci. 9, 1141–1152.

    Article  CAS  Google Scholar 

  • Levienter S. M. and Johnson K. M. (1983) Effects of phencyclidine on the release of radioactivity from rat striatal slices labeled with [3H]-choline.J. Pharmacol. Exp. Ther. 225, 332–336.

    Google Scholar 

  • Lodge D. and Anis N. A. (1982) Effects of phencyclidine on excitatory amino acid activation of spinal interneurones in the cat.Eur. J. Pharmacol. 77, 203–204.

    Article  PubMed  CAS  Google Scholar 

  • Lodge D., Anis N. A., and Burton N. R. (1982) Effects of optical isomers of ketamine on excitatic of cat spinal neurones by amino acids and acetylcholine.Neurosci. Lett. 29, 245–249.

    Article  Google Scholar 

  • Lodge D., Berry S. C., Church J., Martin D., McGhee A., Lai H-M, and Thomson A. M. (1984) Isomers of cyclazocine as excitatory amino acid antagonists.Neuropeptides 5, 245–249.

    Article  PubMed  CAS  Google Scholar 

  • Lodge D. and Johnston G. A. R. (1985) Effect of ketamino on amino acid-evoked release of acetylcholine from rat cerebral cortex in vitro.Neurosci. Lett. 56, 371–375.

    Article  PubMed  CAS  Google Scholar 

  • Loo P., Braunwalder A., Lehman J., and Williams (1985) Central phencyclidine (PCP) receptor binding is glutamate dependent: evidence for a PCP/excitatory amino acid receptor (EAAR) complex.Neurosci. Soc. Abst. 15, 153.

    Google Scholar 

  • Loo P., Brauwalder A., Lehmann J., and Willam M. (1986) Radioligand binding to central phencyclidine recognition sites is dependent on excitatory amino acid receptor agonists.Eur. J. Pharmacol. 123, 467–468.

    Article  PubMed  CAS  Google Scholar 

  • Loo P. H., Braunwalder A. E., Williams M., and Sills M. A. (1987) The novel anticonvulsant MK-801 interacts with central phencyclidine recognition sites in rat brain.Eur. J. Pharmacol. 135, 261–263.

    Article  PubMed  CAS  Google Scholar 

  • Luby E. D., Cohen R. C., Rosenbaum B., Gottlieb J. S., and Kelly R. (1959) Study of a new schizophrenomimetic drug: Sernyl.Arch. Neurol. Psychiat. 81, 363–369.

    CAS  Google Scholar 

  • Maayani S., Weinstein H., Benzvi N., Cohen S., and Sokolovsky M. (1974) Psychotomimetics as anticholinergic agents-I. 1-cyclohexylpiperdine derivatives: anticholinesterase and antagonistic activity to acetylcholine.Biochem. Pharmacol. 23, 1263–1281.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald J. F. and Miljkovic A. (1986) The voltage-and agonist-dependent blockade of excitatory amino acid currents by the dissociative anesthetic ketamine.Soc. Neurosci. Abst. 12, 959.

    Google Scholar 

  • Maragos W. E., Chu D. C. M., Greenamyre J. T., Penney J. B., and Young A. B. (1986) High correlation between the localization of [3H]-TCP binding and NMDA receptors.Eur. J. Pharmacol. 123, 173–174.

    Article  PubMed  CAS  Google Scholar 

  • Martin B. R., Katzen J. S., Woods J. A., Tripathi J. L., Harris L. S., and May E. L. (1984) Stereoisomers of [3H]-N-allylnormetazocine bind to different sites in mouse brain.J. Pharmacol. Exp. Ther. 231, 539–544.

    PubMed  CAS  Google Scholar 

  • Mayer M. L. and Westbrook G. L. (1985) The action ofN-methyl-d-aspartic acid on mouse spinal neurones in culture.J. Physiol. (Lond)361, 65, 65–90.

    CAS  Google Scholar 

  • Marwaha J. (1982) Candidate mechanisms underlying phencyclidine-induced psychosis: an electrophysiological, behavioral, and biochemical study.Biol. Psychiat. 17, 155–198.

    PubMed  CAS  Google Scholar 

  • Monahan J. B. and Michel J. (1987) Identification and characterization of anN-methyl-d-aspartate-specificl-[3H] glutamate recognition site in synaptic plasma membranes.J. Neurochem. 48, 1699–1708.

    Article  PubMed  CAS  Google Scholar 

  • Msira A. L., Pontani R. B., and Bartolomeo J. (1979) Persistence of phencyclidine (PCP) and metabolites in brain, adipose tissue and implications for long-lasting behavioral effects.Res. Comm. Chem. Path. Pharmacol. 24, 431–445.

    Google Scholar 

  • Murray T. F. and Horita A. (1979) Phencyclidine-induced stereotyped behavior in rats: dose-response effects and antagonism by neuroleptics.Life Sci. 24, 2217–2226.

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima T., Sivam S. P., Norris J. C., and Ho I. D. (1981) Calcium-dependent GABA release from mouse brain slices following acute and chronic phencyclidine administration.Res. Comm. Subst. Abuse 2, 343–354.

    CAS  Google Scholar 

  • Nabeshima T., Hiramatsu M., Amano M., Furukawa H., and Kameyama T. (1983) Decrease of methionine-enkephaline.Eur. J. Phama. 86, 271–273.

    Article  Google Scholar 

  • O’Donnell S. R. and Wanstall J. C. (1968) Actions of phencyclidine on the perfused rabbit ear.J. Pharm. 20, 125–131.

    CAS  Google Scholar 

  • Oswald R. and Changeux J.-P. (1981) Ultraviolet light induced labeling by noncompetitive blockers of the acetylcholine receptor from torpedo marmorata.Proc. Natl. Acad. Sci. USA 78, 3925–3929.

    Article  PubMed  CAS  Google Scholar 

  • Oswald R. E., Bamberger J. J., and McLaughlin J. T. (1984) Mechanism of phencyclidine binding to the acetylcholine receptor fromtorpedo electroplaque.Mol. Pharmacol. 25, 360–368.

    PubMed  CAS  Google Scholar 

  • Parsons C. G., Martin D., Franklin R. J. M., Wood J. L., and Headley P. M. (1986) Do kappa opioids mimic sigma agonists as amino acid antagonists?Neuropharmacol. 25, 217–220.

    Article  CAS  Google Scholar 

  • Pilapil C., Contreras P. C., O’Donohue T. L., and Quirion R. (1985) Autoradiographic distribution of [3H] dexoxadrol, a phencyclidine-related ligand, binding sites in rat and human brain.Neurosci. Lett. 56, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Price W. A. and Giannini A. J. (1985) Management of PCP intoxication.AFP 32, 115–188.

    CAS  Google Scholar 

  • Pullan L. M. and Hood W. F. (1987) Phencyclidine (PCP) inhibition ofN-methyl-d-aspartate stimulated sodium flux.J. Neurochem., in press.

  • Pullan L. M., Monahan J. B., Compton R. C., Hood W. F., O’Donohue T. L., Rafferty M. B., Lessor R. A., Rice K. C., and Jacobson A. E. (1987) Metaphit, an acylating phencyclidine analog, enhancesN-methyl-d-aspartate stimulated sodium flux.Neurosci. Soc. Abst., in press.

  • Pryor G. T., Husain S., Larsen S., McKenzie G. E., Carr J. D., and Braude M. C. (1977) Interactions between delta-9 tetrahydrocannabinol and phencyclidine hydrochloride in rats.Pharmacol. Biochem. Behav. 6, 123.

    Article  PubMed  CAS  Google Scholar 

  • Quirion R., Hammer R. P. Jr., Herkenham M., and Pert C.B., (1981a) Phencyclidine (angel dust)/sigma “opiate” visualization by tritium-sensitive film.Proc. Natl. Acad. Sci. USA 78, 5881–5885.

    Article  PubMed  CAS  Google Scholar 

  • Quirion R., Rice K. C., Skolnick P., Paul S., and Pert C. B. (1981b) Stereospecific displacement of [3H] phencyclidine (PCP) receptor binding by an enantiomeric pair of PCP analogs.Eur. J. Pharmacol. 74, 107–108.

    Article  PubMed  CAS  Google Scholar 

  • Quirion R., and Pert C. B. (1982) Certain calcium antagonists are potent displacers of [3H] phencylidine.Eur. J. Pharmacol. 83, 155–156.

    Article  PubMed  CAS  Google Scholar 

  • Quirion R., DiMaggio D. A., French E. D., Contreras P. C., Shiloach J., Pert C. B., Everist J., Pert A., and O’Donohue T. L. (1984) Evidence for an endogenous peptide ligand for the phencyclidine receptor.Peptides 5, 967–973.

    Article  PubMed  CAS  Google Scholar 

  • Rafferty M. G., Mattson M. B., Jacobson A. E., and Rice K. C. (1985) A specific acylating agent for the [3H] phencyclidine receptors in rat brain.FEBS Lett. 181, 318–322.

    Article  PubMed  CAS  Google Scholar 

  • Randrup A. and Munkvad I. (1967) Stereotypic activities produced by amphetamine in several species and man.Psychopharmacol. 11, 300.

    Article  CAS  Google Scholar 

  • Roberts P. J. and Anderson S. D. (1979) Stimulatory effect ofl-glutamate and related amino acids on [3H] dopamine release from rat stiratum: An in vitro model for glutamate actions.J. Neurochem. 32, 1539–1545.

    Article  PubMed  CAS  Google Scholar 

  • Rose G., Pang K., Palmer M., and Freedman R. (1984) Differential effects of phencyclidine upon hippocampal complex-spike and theta neurons.Neurosci. Lett. 45, 141–161.

    Article  PubMed  CAS  Google Scholar 

  • Salles K. S., Price M. T., Ryerson R., Ray J. and Olney J. W. (1986) Dissociative anaesthetics and sigma opiates powerfully blockN-methylaspartate (NMA) neurotoxicity but do not bind at NMA receptor.Soc. Neurosci Abst. 12, 60.

    Google Scholar 

  • Shannon H. E. (1981) Evaluation of phencyclidine analogs on the basis of their discriminative stimulus properties in the rat.J. Pharmacol. Exp. Ther. 216, 543–551.

    PubMed  CAS  Google Scholar 

  • Shannon H. E. (1982) Phencyclidine-like discriminative stimuli of (+)-and (−)-N-allylnormetazocine in rats.Eur. J. Pharmacol. 84, 225–228.

    Article  PubMed  CAS  Google Scholar 

  • Shannon H. E. (1983) Pharmacological evaluation ofN-allylnormetazocine (SKF 10,047) on the basis of its discriminative stimulus properties in the rat.J. Pharmacol. Exp. Ther. 225, 141–152.

    Google Scholar 

  • Shearman G. T., and Herz A. (1982) Non-opioid psychotomimetic-like discriminative stimulus properties ofN-allylnormetazocine (SKF 10,047) in the rat.Eur. J. Pharmacol. 82, 167–172.

    Article  PubMed  CAS  Google Scholar 

  • Simon R. P., Swan J. H., Griffiths T., and Meldrum B. S. (1984) Blockade ofN-methyl-d-aspartate receptors may protect against ischemic damage in the brain.Science 226, 850–852.

    Article  PubMed  CAS  Google Scholar 

  • Sircar R., Samaan G. H., Nichtenhauser R.G., Snell L. D., Mohnson K. C., Rivier J., Vale W., Zukin R. S. and Zukin S. R. (1986) The brain PCP/sigma receptor and its exogenous and endogenous ligands: functional relationship to NMDA.Soc. Neurosci. Abst. 12, 59.

    Google Scholar 

  • Smith R. C., Meltzer H. Y., Arra R. C., and Davis J. M. (1977) Effects of phencyclidine on [3H] catecholamine and [3H] serotonin uptake in synaptosomal preparations from rat brain.Biochem. Pharmacol. 26, 1435–1439.

    PubMed  CAS  Google Scholar 

  • Snell L. D., Mueller Z. M., Gannon R. L., Silverman P. B., and Johnson K. M. (1984) A comparison between classes of drugs having phencyclidine-like behavioral properties on dopamine effect in vitro and dopamine metabolism in vivo.J. Pharmacol. Exp. Ther. 231, 261–269.

    PubMed  CAS  Google Scholar 

  • Snell L. D., and Johnson K. M. (1985) Antagonism ofN-methyl-d-aspartate-induced transmitter release in the rat striatum by phencyclidine-like drugs and its relationship to turning behavior.J. Pharmacol. Exp. Ther. 235, 50–57.

    PubMed  CAS  Google Scholar 

  • Snell L. D. and Johnson K. M. (1986) Characterization of the inhibition of excitatory amino acid-induced neurotransmitter release in the rat striatum by phencyclidine-like drugs.J. Pharmacol. Exp. Ther. 238, 938–946.

    PubMed  CAS  Google Scholar 

  • Sonders M., Campbell B., and Weber E. (1986) Identification and partial characterization of an endogenous compound that competitively and reversibly inhibitied [3H]-DTG from binding to the haloperidol-sensitive sigma (opioid) receptor.Soc. Neurosci. Abst. 12, 172.

    Google Scholar 

  • Sorensen R. G. and Blaustein M. P. (1986)m-Azidophencyclidine covalently labels the rat brain PCP receptor, a putative K+ channel.J. Neurosci. 6, 3676–3681.

    PubMed  CAS  Google Scholar 

  • Steinfels G. F., Tam S. W., and Cood L. (1987) (+)-3-(3-hydroxyphenyl)N-(1-propyl) piperdine [(+)-3-PPP] but not (−)-3-PPP produces (+)-N-allynormetazocine-like (SKF 10,047) discriminated stimuli.Life Sci., in press.

  • Sturgeon R. D., Fessler R. G., and Meltzer H. Y. (1979) Behavioral rating scales for assessing phencyclidine-induced locomotor activity, stereotyped behavior and ataxia in rats.Eur. J. Pharmacol. 59, 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Su T.-P. (1982) Evidence for sigma opioid receptor: binding of [3H] SKF 10,047 to etorphine-inaccessible sites in guinea-pig brain.J. Pharmacol. Exp. Ther. 223, 284–290.

    PubMed  CAS  Google Scholar 

  • Su T.-P., Weissman S. D., and Yeh S.-Y. (1986) Endogenous ligands for sigma opioid receptors in brain (“sigmaphin”): evidence from binding assays.Life Sci. 38, 2190–2210.

    Google Scholar 

  • Sung Y. F., Frederickson E. L., and Holtzman S. G. (1973) Effects of intravenous anesthetics on brain monoamines in the rat.Anesthesiology 39, 478–487.

    Article  PubMed  CAS  Google Scholar 

  • Takeda H., Gazzara R. A., and Howard S. G. (1973) Phencyclidine on the efflux of dopamine in the rat.Neuropharmacol. 25, 1341–1345.

    Article  Google Scholar 

  • Tam S. W. (1983) Naloxone-inacessible sigma receptor in rat central nervous system.Proc. Natl. Acad. Sci. USA 80, 6703–6707.

    Article  PubMed  CAS  Google Scholar 

  • Tam S. W. (1985) (−)-[3H]SKF 10,047, (+)[3H] ethylketocyclazocine, mu, kappa, delta, and phencyclidine binding sites in guinea pig brain membranes.Eur. J. Pharmacol. 109, 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Tam S. W. and Cook L. (1984) Sigma opiates and certain antipsychotic drugs mutually inhibit (+)-[3H]SKF 10,047 and [3H]haloperidol binding in guinea pig brain membranes.Proc. Natl. Acad. Sci. USA 81, 5618–5621.

    Article  PubMed  CAS  Google Scholar 

  • Taylor D. P. and Dekleva J. (1987) The potential antipsychotic BMY14802 selectively binds to sigmasites.Sed. Proc. 46, 1304.

    Google Scholar 

  • Teal J. J. and Holtzman S. G. (1980) Discriminative stimulus effects of cyclazocine in the rat.J. Pharmacol. Exp. Ther. 212, 368–376.

    PubMed  CAS  Google Scholar 

  • Thomson A. M., West D. C., and Lodge D. (1985) AnN-methylaspartate receptor-mediates synapse in rat cerebral cortex: a site of action of ketamines?Nature 313, 479–481.

    Article  PubMed  CAS  Google Scholar 

  • Thomson A. M. and Lodge D. (1985) Selective blockade of an excitatory synapse in rat cerebral cortex by the sigma opiate cyclazocine: an intracellular, in vitro study.Neuroscience Lett. 54, 21–26.

    Article  CAS  Google Scholar 

  • Tonge S. R., and Leonard B. E. (1970) The effects of some hallucinogenic drugs on the amino acid precusors of brain monoamines.Life Sci. 9 1327–1335.

    Article  CAS  Google Scholar 

  • Tonge S. R., and Leonard B. E. (1972) Interaction of phencyclidine with drugs affecting noradrenaline metabolism in the rat brain.Psychopharmacol. 23, 86–90.

    Article  CAS  Google Scholar 

  • Usdin E., and Usdin V. R. (1961) Effects of psychotropic compounds on enzyme systems, II: In vitro inhibition of monoamine oxidase.Soc. Exp. Biol. Med. Proc. Med. 108, 461–463.

    CAS  Google Scholar 

  • Vickroy T. W., and Johnson K. M. (1981) Stimulation of synaptosomal tyrosine hydroxylation by phencyclidine in vitro.Eur. J. Pharmacol. 71, 463–473.

    Article  PubMed  CAS  Google Scholar 

  • Vickroy T. W. and Johnson K. M. (1982) Similar dopamine-releasing effects of phencyclidine and nonamphetamine stimulants in striatal slice.J. Pharmacol. Exp. Ther. 223, 669–674.

    PubMed  CAS  Google Scholar 

  • Vignon J., Vincent J. P., Bidard J. N., Kamenka J. M., Geneste P., Monier S., and Lazdunski, M. (1982) Biochemical properties of the brain phencyclidine receptor.Eur. J. Parmacol. 81, 531–542.

    Article  CAS  Google Scholar 

  • Vignon J., and Lazdunski M. (1984) Structure-function relationships in the inhibition of synaptosomal dopamine uptake by phencyclidine and analogs: potential correlation with binding site identified with [3H] phencyclidine.Biochem. Pharmacol. 333, 700–702.

    Article  Google Scholar 

  • Vincent J. P., Cavey D., Kamenka J. M., Geneste P., and Lazdunski M. (1978) Interaction of phencyclidines with the muscarinic and opiate receptors in the central nervous system.Brain Res. 152, 176–182.

    Article  PubMed  CAS  Google Scholar 

  • Vincent J. P., Cavey D., Kamenka J. M., Geneste P., and Lazdunski M. (1979) Interaction of phencyclidine (“angel dust”) with a specific receptor in rat brain membranes.Proc. Natl. Acad. Sci. USA.76, 4678–4682.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y., Kim N. B., and Palmer M. R. (1987) Interactions of metaphit with phencyclidine and sigma agonist actions in rat cerebellum: determination of specificity and selectivity.J. Pharmacol. Exp. Ther. 321–327.

  • Weber E., Sonders M., Quarum M., McLean S., Pou S., and Keana J.F.W. (1986) 1.3-Di(2-3H) tolyl) guanidine: A selective ligand that labels sigma-type receptors for psychotomimetic opiates and antipsychotic drugs.Proc. Nat. Acad. Sci. USA 83, 8784–8788.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein H., Maayani S., Srebrenik S., Cohen S., and Sikolovsky M. (1973) Psychotomimetic drugs as anticholinergic agents. II. Quantum-mechanical study on molecular interaction potential of 1-cyclohexylpiperdine derivatives with the cholinergic receptors.Mol. Pharmacol. 9, 820–834.

    PubMed  CAS  Google Scholar 

  • Willetts J., Chapman M. Y., and Balstar R. L. (1986) Discriminative stimulus effects of 2-amino-7-phosphonoheptanoic acid (APH) in phencyclidine trained rats.Soc. Neurosci. Abst. 12, 909

    Google Scholar 

  • Wong E. H. G., Kemp J. A., Priestley T., Knight S. R., Woodruff G. A., and Iverson L. L. (1986) The anticonvulsant MK-801 is a potentN-methyl-d-aspartate antagonist.Proc. Natl. Acad. Sci. USA 83, 7104–7109.

    Article  PubMed  CAS  Google Scholar 

  • Zukin S. R., and Zukin R. S. (1978) Specific [3H]-phencyclidine binding in rat central nervous system.Proc. Natl. Acad. Sci. USA 76, 5372–5376.

    Article  Google Scholar 

  • Zukin R. S. and Zukin S. R. (1981) Demonstration of [3H] cyclazocine binding to multiple opiate receptor sites.Mol. Pharmacol. 20, 246–254.

    PubMed  CAS  Google Scholar 

  • Zukin R. S., Zukin S. R., Vale W., Rivier J., Nichtenhauser R., Snell L. D., Johnson K. M. (1987) An endogenous ligand of the brain sigma/PCP receptor antagonized NMDA-induced neurotransmitter release.Brain Res. 416, 84–89.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contreras, P.C., Monahan, J.B., Lanthorn, T.H. et al. Phencyclidine. Mol Neurobiol 1, 191–211 (1987). https://doi.org/10.1007/BF02936608

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02936608

Index Entries

Navigation