Skip to main content

Advertisement

Log in

Strategy for designing specific antisense oligonucleotide sequences

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Antisense compounds, various forms of nucleotides or their analogs, inhibit gene function both in vitro and in vivo. Although antisense compounds have been used extensively not only as a basic research tool but also as therapeutics for various diseases, one of the major problems is the difficulty of obtaining optimal sequences to inhibit specific gene functions. Although the terms “sequence-specificity” or “sequence-nonspecificity” are often used, there is no consensus as to how to define and quantitate such sequence specificity. In this review, we introduced hybridization simulation for designing optimal antisense sequences. Each candidate antisense oligonucleotide is assessed by calculating its hybridization energy against potential hybridization sites within the specified database (including Genbank) using a realistic nearest-neighbor thermodynamic model, taking into account mismatches. The specificity of each oligonucleotide is then quantitated by the number of potential cross-hybridizable genes and their degree of cross-hybridization. Further-more, if antisense sequences exhibit a high potential for hairpin formation, they are not recommended even if they are highly specific. Therefore, to select antisense sequences, one should calculate all the potential factors for each candidate oligonucleotide such as length, location, specificity, hairpin potential, mRNA secondary structure, and dimer formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zon G. Brief overview of control of genetic expression by antisense oligonucleotides and in vivo applications. Prospects for neurobiology. Mol Neurobiol 1995;10:219–229.

    Article  PubMed  CAS  Google Scholar 

  2. Crooke ST. Progress in antisense therapeutics. Hematol Pathol 1995;9:59–72.

    PubMed  CAS  Google Scholar 

  3. Brysch W, Schlingensiepen KH. Design and application of antisense oligonucleotides in cell culture, in vivo, and as therapeutic agents. Cell Mol Neurobiol 1994;14:557–568.

    Article  PubMed  CAS  Google Scholar 

  4. Narayanan R. Antisense therapy of cancer. In Vivo 1994;8:787–793.

    PubMed  CAS  Google Scholar 

  5. Agrawal S, Temsamani J, Galbraith W, et al. Pharmacokinetics of antisense oligonucleotides. Clin Pharmacokinet 1995;28:7–16.

    Article  PubMed  CAS  Google Scholar 

  6. Stein CA, Cheng Y-C. Antisense oligonucleotides as therapeutic agents. Is the bullet really magical? Science 1993;261:1004–1012.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang R, Yan J, Shahinian H, et al. Pharmacokinetics of an antihuman immunodeficiency virus antisense oligodeoxynucleotide phosphorothioate (GEM 91) in HIV-infected subjects. Clin Pharmacol Ther 1995;58:44–53.

    Article  PubMed  CAS  Google Scholar 

  8. Wagner RW. Gene inhibition using antisense oligodeoxynucleotides. Nature 1994;372:333–335.

    Article  PubMed  CAS  Google Scholar 

  9. Egholm M, Buchardt O, Nielsen P, et al. Peptide nucleic acids (PNA). Oligonucleotide analogues with an achiral peptide backbone. J Am Chem Soc 1992;114:1895–1897.

    Article  CAS  Google Scholar 

  10. Stirchak E, Summerton J, Weller D. Uncharged stereoregular nucleic acid analogs: 2. Morpholino nucleoside oligomers with carbamate internucleoside linkages. Nucleic Acids Res 1989;17: 6129–6141.

    Article  PubMed  CAS  Google Scholar 

  11. Stein C, Cohen J. Phosphorothioate oligonucleotide analog. In: Cohen J (ed) Oligonucleotides: Antisense inhibitors of gene expression. Boca Raton: CRC, 1989:97–117.

    Google Scholar 

  12. Mitsuhashi M, Cooper A, Ogura M, et al. Oligonucleotide probe design—a new approach. Nature 1994;367:759–761.

    Article  PubMed  CAS  Google Scholar 

  13. Hyndman D, Cooper A, Pruzinsky S, et al. Software to determine optimal oligonucleotide sequences based on thermodynamic hybridizability. Biotechniques 1996;20:1090–1097.

    PubMed  CAS  Google Scholar 

  14. Breslauer KJ, Frank R, Blocker H, et al. Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci USA 1986;83:3746–3750.

    Article  PubMed  CAS  Google Scholar 

  15. SantaLucia J, Allawi HT, Seneviratne PA. Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 1996;35:3555–3562.

    Article  PubMed  CAS  Google Scholar 

  16. SantaLucia J, Kierzek R, Turner DH. Effects of GA mismatches on the structure and thermodynamics of RNA internal loops. Biochemistry 1990;29:8813–8819.

    Article  PubMed  CAS  Google Scholar 

  17. Sugimoto N, Kierzek R, Freier SM, et al. Energetics of internal GC mismatches in ribooligonucleotide helix. Biochemistry 1986; 25:5755–5759.

    Article  PubMed  CAS  Google Scholar 

  18. Fakler B, Herlitzer S, Amthor B, et al. Short antisense oligonucleotide-mediated inhibition is strongly dependent on oligo length and concentration but almost independent of location of the target sequence. J Biol Chem 1994;269:16187–16194.

    PubMed  CAS  Google Scholar 

  19. Spearman M, Taylor WR, Greenberg AH, et al. Antisense oligodeoxyribonucleotide inhibition of TGF-beta 1 gene expression and alterations in the growth and malignant properties of mouse fibrosarcoma cells. Gene 1994;149:25–29.

    Article  PubMed  CAS  Google Scholar 

  20. Moria BP, Johnston JF, Ecker DJ, et al. Selective inhibition of mutant Ha-ras mRNA expression by antisense oligonucleotides. J Biol Chem 1992;267:19954–19962.

    Google Scholar 

  21. Bennett CF, Condon TP, Grimm S, et al. Inhibition of endothelial cell adhesion molecule expression with antisense oligonucleotides. J Immunol 1994;152:3530–3540.

    PubMed  CAS  Google Scholar 

  22. Hodges D, Crooke ST. Inhibition of splicing of wild-type and mutated luciferase-adenovirus pre-mRNAs by antisense oligonucleotides. Mol Pharmacol 1995;48:905–918.

    PubMed  CAS  Google Scholar 

  23. Giles RV, Spiller DG, Green JA, et al. Optimization of antisense oligodeoxynucleotide structure for targeting bcr-abl mRNA. Blood 1995;86:744–754.

    PubMed  CAS  Google Scholar 

  24. Pari GS, Field AK, Smith JA. Potent antiviral activity of an antisense oligonucleotide complementary to the intron-exon boundary of human cytomegalovirus genes UL36 and UL37. Antimicrob Agents Chemother 1995;39:1157–1161.

    PubMed  CAS  Google Scholar 

  25. Wilbur WJ, Lipman DJ. Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci USA 1983;80:726–730.

    Article  PubMed  CAS  Google Scholar 

  26. Pearson WR, Lipman DJ. Improved tools for biological sequence analysis. Proc Natl Acad Sci USA 1988;85:2444–2448.

    Article  PubMed  CAS  Google Scholar 

  27. Smith TF, Waterman MS. Comparison of bio-sequences. Adv Appl Math 1981;2:482–489.

    Article  Google Scholar 

  28. Turner DH, Sugimoto N, Freier SM. RNA structure prediction. Ann Rev Biophys Chem 1988;17:167–192.

    Article  CAS  Google Scholar 

  29. Sugimoto N, Nakano S, Katho M, et al. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 1995;34:11211–11216.

    Article  PubMed  CAS  Google Scholar 

  30. Mitsuhashi M. Method of determining optimal PCR primers. Protein Nucleic Acid Enzyme 1996;41:439–445.

    CAS  Google Scholar 

  31. Jaeger JA, Turner DH, Zuker M. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci USA 1989;86: 7706–7710.

    Article  PubMed  CAS  Google Scholar 

  32. Marschall P, Thomson JB, Eckstein F. Inhibition of gene expression with ribozymes. Cell Mol Neurobiol 1994;14:523–538.

    Article  PubMed  CAS  Google Scholar 

  33. Dean NM, McKay R. Inhibition of protein kinase C-alpha expression in mice after systemic administration of phosphorothioate antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 1994; 91:11762–11766.

    Article  PubMed  CAS  Google Scholar 

  34. Wollnik F, Brysch W, Uhlmann E, et al. Block of c-Fos and JunB expression by antisense oligonucleotides inhibits light-induced phase shifts of the mammalian circadian clock. Eur J Neurosci 1995;7:388–393.

    Article  PubMed  CAS  Google Scholar 

  35. Burch RM, Mahan LC. Oligonucleotides antisense to the interleukin 1 receptor mRNA block the effects of interleukin 1 in cultured murine and human fibroblasts and in mice. J Clin Invest 1991;88:1190–1196.

    Article  PubMed  CAS  Google Scholar 

  36. Ensoli B, Markham P, Kao V, et al. Block of AIDS-Kaposi's sarcoma (KS) cell growth, angiogenesis, and lesion formation in nude mice by antisense oligonucleotide targeting basic fibroblast growth factor. A novel strategy for the therapy of KS. J Clin Invest 1994;94:1736–1746.

    Article  PubMed  CAS  Google Scholar 

  37. Raffa RB, Martinez RP, Connelly CD. G-protein antisense oligodeoxyribonucleotides and mu-opioid supraspinal antinociception. Eur J Pharmacol 1994;258:R5–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsuhashi, M. Strategy for designing specific antisense oligonucleotide sequences. J Gastroenterol 32, 282–287 (1997). https://doi.org/10.1007/BF02936384

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02936384

Key words

Navigation