Skip to main content
Log in

Refractive-index dispersion measurement of bulk optical materials using a fiber raman laser widely tunable in the visible and near-infrared

  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We propose a simple, highly sensitive fiber-optic autocollimation method for refractive-index dispersion measurement of solid-state and liquid bulk optical materials using a double-pass fiber Raman laser with Littrow-prism-tuned emission. The optical fiber is a key element of the scheme and serves simultaneously as a point laser source for the test, as a highly sensitive point receiver (or spatial filter) of the autocollimation backreflectance signal and as a medium for nonlinear frequency conversion and generation of a broadband continuum spectrum. When the Raman medium is a graded-index multimode fiber with powerful pumping (over 100 kW) using the second harmonic of a Q-switched Nd:YAG laser (λp=532nm), we obtain widely tunable (0.54-1.01 μm) generation in both the visible and near-IR ranges. The results obtained in the refractive-index dispersion measurements are fitted to the Sellmeier dispersion equation and the standard deviation of the experimental data from the analytical curve does not exceed 5x10-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Tropf, M. Thomas and T. Harris:Handbook of Optics, ed. M. Bass (McGraw-Hill, New York, 1995) Vol. 2, Chap. 33, p. 33. 1.

    Google Scholar 

  2. P. Shaffer: Appl. Opt.10 (1971) 1034.

    ADS  Google Scholar 

  3. S. Mitachi and T. Miyashita: Appl. Opt.22 (1983) 2419.

    ADS  Google Scholar 

  4. C. Carniglia, K. Schrader, P. O’Connell and S. Tuenge: Appl. Opt.28 (1989) 2902.

    ADS  Google Scholar 

  5. O. Stavroudis and L. Sutton: J. Opt. Soc. Am.51 (1961) 368.

    Google Scholar 

  6. B. Tatian: Appl. Opt.23 (1984) 4477.

    ADS  Google Scholar 

  7. G. Ghosh, M. Endo and T. Iwasaki: J. Lightwave Technol.12 (1994) 1338.

    Article  ADS  Google Scholar 

  8. J. Dakin and B. Culshaw eds.:Optical Fiber Sensors: Principles and Components (Artech House, Dedham, MA, 1988) Chap. 1, p. 1.

    Google Scholar 

  9. E. Udd: Rev. Sci. Instrum.66 (1995) 4015.

    Article  ADS  Google Scholar 

  10. Z. Zhou and F. Liu: J. Opt. Soc. Am. A8 (1991) 322.

    ADS  Google Scholar 

  11. I. Ilev: Appl. Opt.34 (1995) 1741.

    ADS  Google Scholar 

  12. I. Ilev: Opt. Commun.119 (1995) 513.

    Article  ADS  Google Scholar 

  13. G. Agrawal:Nonlinear Fiber Optics (Academic Press, London, 1989) Chap. 8, p. 218.

    Google Scholar 

  14. C. Lin: J. Lightwave Technol.LT-4 (1986) 1103.

    Article  ADS  Google Scholar 

  15. L. Cohen and C. Lin: IEEE I. Quantum Electron.QE-14 (1978) 855.

    Article  ADS  Google Scholar 

  16. I. Ilev, H. Kumagai, K. Toyoda and I. Koprinkov: Appl. Opt.35 (1996) 2548.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilev, I.K., Kumagai, H. & Toyoda, K. Refractive-index dispersion measurement of bulk optical materials using a fiber raman laser widely tunable in the visible and near-infrared. Optical Review 4, A61–A64 (1997). https://doi.org/10.1007/BF02935993

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935993

Key Words

Navigation