Skip to main content
Log in

Biosynthesis of the glucobrassicin aglycone from14C and15N labelled L-tryptophan precursors

Biosyntéza aglykonu glukobrasicinu z14C a15značných L-tryptofanových prekursorů

  • Published:
Biologia Plantarum

Abstract

The formation of the isothiocyanate group of the aglycone of glucobrassicin (Glubr) an indole glucosinolate present in relatively large quantities in plants of the familyBrassicaceae, was studied. Labelled Glubr was synthesized from L-tryptophan-3-14C-amino15N in winter rape hypocotyl segments. After extraction it was finally isolated in a crystalline state by mixed crystallization with added inactive Glubr tetramethylammonium salt. The specific activity of14C and the atoms % excess15N were determined in both the precursor and the product. The ratio14C/15N as well as the values of dilution of14C and15N were in agreement in the precursor and in the final product. This shows,inter alie, that during the biosynthesis of Glubr, L-tryptophan is not deaminated. Thus the presumed isothiocyanate group of Glubr is synthesized on the α-carbon of the L-tryptophan alanine chain, the α-carbon together with the attached nitrogen pass directly from the precursor into the Glubr aglycone. This represents a type of glucosinolate aglycone biosynthesis where the carbon chain of the initial amino acid is not elongated. This finding is supported by the fact that L-tryptophan-l-14C does not yield labelled Glubr the C1 carbon being decarboxylated during Glubr synthesis.

Abstract

Byla studována tvorba isothiokyanátové skupiny předpokládaného aglykonu glukobrasicinu (Glubr), indolového glukosinalátu přítomného v relativné vyšších mnozstvích v rostlinách čeledi Brassicaceae.

Hypokotylární segmenty řepky syntetizovaly z L-tryptofanu-3-14C-amino15N isotopicky znaceny Glubr, který byl extrahován a konečnč isolován v krystaliekém stavu směsnou krystalizací s přidaným neaktivním Glubr ve formě tetramethylammoniové sole. U prekursoru a u produktu byly stanoveny s'pecifická aktivita14C a % obohacení15N. Jak poměry14C/15N, tak i hodnoty zředční14C a15N u prekursoru a u výsledného produktu si navzájem odpovídaly, což svědčí mj. o torn, že během biosyntézy Glubr z L-tryptofanu nedoohází k desaminaci aminokyseliny. Potenciální isothiokyanátová skupina Glubr se tak vytváří na α-uhlíku alaninového řetézce L-tryptofanu, α-uhlík včetně navázaného dusíku přeoházejí do aglykonu Glubr pří mo z prekursoru. Jde o typ biosyntézy aglykonu glukosinolátu v némž nedoohází k prodluzování uhlíkového řetězce výchozí aminokysoliny, Uvedený závěr dokládá zjištění, že L-tryptofan-l-14C neposkytuje značený Glubr, C1 uhlík je během syntézy Glubr dekarboxylován.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benn, M. H.: Biosynthesis of mustard oils.—Chem. Industry p. 1907, 1962.

  • Chisholm, M. D., Wetter, L. R.: Biosynthesis of mustard oil glucosides IV. The administration of methionine-14C and related compounds to horseradish.—Can. J. Biocheaa.42: 1033–1040, 1964.

    Article  CAS  Google Scholar 

  • Chisholm, M. D., Wetter, L. R.: Biosynthesis of mustard oil glucosides VII. Formation of sinigrin in horseradish from homomethionine-2-14C and homoserine-2-14C.— Can. J. Biochem.44: 1625–1632, 1966.

    Article  CAS  Google Scholar 

  • Chisholm, M. D., Wetter, L. R.: The biosynthesis of some isothioGyanates and oxazolidinethiones in rape (Brassica campestris L.).—Plant Physiol.42: 1726–1730, 1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ettlinger, M. G., Lundeen, A. J.: The structure of sinigrin and sinalbin; an enzymatic arrangement. —J. Amer. Chem. Soc.78 : 4172, 1956.

    Article  CAS  Google Scholar 

  • Gmelin, R., Virtanen, A. I.: Glucobrassicin, der Prekursor von SCN’, 3-Indolylacetonitril und Ascorbigen in Brassica olerÁcea species.—Ann. Acad. Sci. fenn. A II, Chem. pp. 1–24, 1961.

  • Josefsson, K.: Distribution of thioglucosides in different parts of Brassica plants.—Phytochemistry6: 1617–1627, 1967.

    Article  CAS  Google Scholar 

  • Josefsson, E.: Glucosinolate content and amino acid composition of rapeseed (Brassica napus) meal as affected by sulphur and nitrogen nutrition.—J. Sci. Food Agrie.21: 98–103, 1970.

    Article  CAS  Google Scholar 

  • Josefsson, E.: Studies of the biochemical background to differences in glucosinalate content inBrassica napus L. I. Glucosinolate content in relation to general chemical composition. — Physiol. Plant.24: 150–159, 1971a.

    Article  CAS  Google Scholar 

  • Josefsson, E.: Studies of the biochemical background to differences in glucosinolate content inBrassica napus L. II. Administration of some sulphur-35 and carbon-14 compounds and localization of metabolic blocks.—Physiol. Plant.24: 161–175, 1971b.

    Article  CAS  Google Scholar 

  • Kindl, H.; Zur Biosynthese des Sinalbins. 1. Mitt.—Monatsh. Chem.95: 439–448, 1946.

    Article  Google Scholar 

  • Lee, C. J., Serif, G. S.: 2-amino-6-(methylthio) caproic acid, a methionine homolog and precursor of progoitrin.—Biochem. biophys. Acta165: 569–571, 1968.

    Article  CAS  Google Scholar 

  • Lee, C. J., Serif, G. S.: Precursor role of (14C,15N)-2-amino-6-(methylthio) caproic acid in progoitrin biosynthesis.—Biochemistry9: 2068–2071, 1970.

    Article  CAS  PubMed  Google Scholar 

  • Libbert, E., Wichner, S., Schiwer, V.,Risch, H.,Kaiser, W.: The influence of epiphytic bacteriae on auxin metabolism.—Planta68: 327–334. 1966.

    Article  CAS  PubMed  Google Scholar 

  • Matsuo, M., Underhill, E. W.: A UDP glucose: thiohydroximate glucosyl-transferase fromTropaeolum majus L.—Biochem. biophys. Res. Commun.36: 18–23, 1969.

    Article  CAS  PubMed  Google Scholar 

  • Matsuo, M., Yamazaki, M.: Biosynthesis of sinigrin. VI. Incorporation from homomethionine (2-14C,15N) and some labelled compounds into sinigrin.—Chem. Pharm. Bull.16: 1034–1039, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Matsuo, M., Yamazaki, M.: Biosynthesis of sinigrin III.—Biochem. biophys. Res. Commun.24: 786–791, 1966.

    Article  CAS  PubMed  Google Scholar 

  • Schraudolf, H.: Der Stoffwechsel von Indolderivaten inSinapis alba L. Synthese und Umsetzung von L-Tryptophan in etiolierten Hypokotylsegmenten nach Applikation von Indol-2-14C. — Phytochemistry5: 83–90, 1966.

    Article  CAS  Google Scholar 

  • Schraudolf, H.: Untersuchung zur Verbreitung von Indolylglucosinolaten in Cruciferen. — Experientia24: 434, 1968.

    Article  CAS  Google Scholar 

  • Schraudolf, H., Bergmann, F.: Der Stoffwechsel von Indolderivaten inSinapis alba L. II. Untersuchungen zu Biogenese und Umsetzung von Indolglucosinolaten mit Hilfe von ringmarkiertem14C-Tryptophan und35S Sulfat.—Planta67 : 75–95, 1965.

    Article  CAS  Google Scholar 

  • Sedlák, J.: Cultivation of goitrogeneous and nongoitrogeneous cabbage.—Nature192 : 377–378, 1961.

    Article  Google Scholar 

  • Sedlák, J., Michajlovskij, N.: Vplyv zvýšeného příjmu síranov na obsah tiokyanidu v zimnej kapuste. [The influence of higher sulphur-uptake on the thiocyanate content in winter cabbage]. — Chem. Zvesti (Bratislava)12: 477–486, 1958.

    Google Scholar 

  • Kjaer, A.: Secondary organic sulphur-compounds of plants. (Thiols, sulphides, sulphonium derivatives, sulphoxides, sulphones and isothiocyanates).—In:Ruhland, W. (ed.): Handbuch der Pflanzenphysiologie. Vol. 9, Springer Verlag, Berlin, pp. 64–68, 1958.

    Google Scholar 

  • Králová, M.: Sledování15N v rostlinném materiálu. Hmotově-spektrometrioká analyza. [The investigation of15N in plant material. Mass Spectrometric analysis].—Rostí. Vý roba Praha13: 427–433, 1967.

    Google Scholar 

  • Králová, M.: Stanovení mikromnozství15N v biologickém materiálu pomocí zředovací analýzy. [Determination of15N microquantities in biologic material by dilution analysis].—Rostl. Výroba Praha18: 107–111, 1972.

    Google Scholar 

  • Kutáček, M.: Indolderivate in Pflanzen der Familie Brassicaceae.—Wiss. Zeitschr. Univ. Rostock16 : 417–426, 1967.

    Google Scholar 

  • Kutáček, M., Kefeli, V.: The present knowledge of indole compounds in plants of the Brassicaceae family. — In:Wightman, F. andSetterfield, G. (ed.): Biochemistry and Physiology of Plant Growth Substances.—Runge Press, Ottawa, pp. 127–152, 1968.

    Google Scholar 

  • Kutáček, M., Kefeli V.: Biogenesis of indole compounds from D- and L-tryptophan in segments of etiolated seedlings of cabbage, maize and pea.—Biol. Plant,12: 145–158, 1970.

    Article  Google Scholar 

  • Kutáček, M., Oplištilová, K.: [The distribution of glucobrassicin, a precursor of indolylacetonitril, ascorbigen and thiocyanate ions in plants of the Brassicaceae family]. —Fiziol. Rast.11: 867–870, 1964.

    Google Scholar 

  • Kutáček, M., Procházka, Ž., Vereš, K.: Biogenesis of glucobrassicin, thein vitro precursor of ascorbigen.—Nature194: 393–394, 1962.

    Article  PubMed  Google Scholar 

  • Kutáček, M., Spálený, J., Oplistilová, K.: Die biosynthetische Inkorporation von extremem S35O2 in Glucobrassicin.—Experientia22: 24, 1966.

    Article  PubMed  Google Scholar 

  • Underhill, E. W.: Biosynthesis of mustard oil glucosides V. Formation of gluconasturtin from L-ϒ-phenylbutyrine-14C-15N in watercress.—Can. J. Biochem.49: 179–187, 1965.

    Article  Google Scholar 

  • Underhill, E. W.: Biosynthesis of mustard oil glucosides VI. Biosynthesis of glucobarbarin inBeseda luteola L.—Can. J. Biochem.43 : 189–198, 1965.

    Article  CAS  PubMed  Google Scholar 

  • Underhill, E. W.: Biosynthesis of mustard oil glucosides: conversion of phenylacetaldehyde oxime and 3-phenylpropionaldehyde oxime to glucotropaeolin and gluconasturtiin.—Europ. J. Biochem.2: 61–63. 1967.

    Article  CAS  PubMed  Google Scholar 

  • Underhill, E. W., Chisholm, M. D.: Biosynthesis of mustard oil glucosides III. Formation of glucotropaeolin from o-phenylalanine-14C-15N. — Biochem. biophys. Res. Commun.14: 425–430, 1064.

    Article  Google Scholar 

  • Underbill, E. W., Chisholm, M. D., Wetter, L. R.: Biosynthesis of mustard oils glucosides I. Administration of14C-labelled compounds to horseradish, nasturtium and watercress. — Can. J. Biochem. Physiol.40: 1505–1514, 1962.

    Article  Google Scholar 

  • Underhill, E. W., Wettee, L. R.: Biosynthesis of mustard oil glucosides: sodium phenylacetothiohydroximate and desulfobenzylglucosinolate, precursors of benzylglucosinolate inTropaeolum majus L.—Plant Physiol.44: 584–590, 1969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wetter, L. R.: Biosynthesis of mustard oil glucosides II. The administration of sulphur-35 compounds to horseradish leaves.— Phytochemistry3: 57–64, 1964.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutáček, M., Králová, M. Biosynthesis of the glucobrassicin aglycone from14C and15N labelled L-tryptophan precursors. Biol Plant 14, 279–285 (1972). https://doi.org/10.1007/BF02935853

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935853

Keywords

Navigation