Skip to main content
Log in

Thymopoietin, a thymic polypeptide, potently interacts at muscle and neuronal nicotinic α-bungarotoxin receptors

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Current studies suggest that several distinct populations of nicotinic acetylcholine (ACh) receptors exist. One of these is the muscle-type nicotinic receptors with which neuromuscular nicotinic receptor ligands and the snake toxin α-bungarotoxin interact. α-Bungarotoxin potently binds to these nicotinic receptors and blocks their function, two characteristics that have made the α-toxin a very useful probe for the characterization of these sites. In neuronal tissues, several populations of nicotinic receptors have been identified which, although they share a nicotinic pharmacology, have unique characteristics. The α-bungarotoxin-insensitive neuronal nicotinic receptors, which may be involved in mediating neuronal excitability, bind nicotinic agonists with high affinity but do not interact with α-bungarotoxin. Subtypes of these α-toxin-insensitive receptors appear to exist, as evidenced by findings that some are inhibited by neuronal bungarotoxin whereas others are not. In addition to the α-bungarotoxin-insensitive sites, α-bungarotoxin-sensitive neuronal nicotinic receptors are also present in neuronal tissues. These latter receptors bind α-bungarotoxin with high affinity and nicotinic agonists with an affinity in the μM range. The function of the nicotinic α-bungarotoxin receptors are as yet uncertain.

Thymopoietin, a polypeptide linked to immune function, appears to interact specifically with nicotinic receptor populations that bind α-bungarotoxin. Thus, in muscle tissue where α-bungarotoxin both binds to the receptor and blocks activity, thymopoietin also potently binds to the receptor and inhibits nicotinic receptormediated function. In neuronal tissues, thymopoietin interacts only with the nicotinic α-bungarotoxin site and not the α-bungarotoxin-insensitive neuronal nicotinic receptor population. These observations that thymopoietin potently and specifically interacts with nicotinic α-bungarotoxin-sensitive receptors in neuronal and muscle tissue, together with findings that thymopoietin is an endogenously occurring agent, could suggest that this immune-related polypeptide represents a ligand for the α-bungarotoxin receptors. The function of thymopoietin at the α-bungarotoxin receptor is as yet uncertain; however, a potential trophic, as well as other roles are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abood L. G. and Grassi S. (1986) [3H] Methylcarbamylcholine, a new radioligand for studying brain nicotinic receptors.Biochem. Pharmacol. 35, 4199–4202.

    PubMed  CAS  Google Scholar 

  • Alkondon M. and Albuquerque E. X. (1990) α-Cobratoxin blocks the nicotinic acetylcholine receptor in rat hippocampal neurons.Eur. J. Pharmacol. 191, 505–506.

    PubMed  CAS  Google Scholar 

  • Anand R., Conroy W. G., Schoepfer R., Whiting P., and Lindstrom J. (1991) Neuronal nicotinic acetylcholine receptors expressed inXenopus oocytes have a pentameric quaternary structure.J. Biol. Chem. 17, 11,192–11,198.

    Google Scholar 

  • Arimatsu Y., Seto A., and Amano T. (1981) Sexual dimorphism in α-bungarotoxin binding capacity in the mouse amygdala.Brain Res. 213, 432–437.

    PubMed  CAS  Google Scholar 

  • Audhya T., Schlesinger D. H., and Goldstein G. (1981) Complete amino acid sequences of bovine thymopoietins I, II, and III: Closely homologous polypeptides.Biochemistry 20, 6195–6200.

    PubMed  CAS  Google Scholar 

  • Audhya T., Scheid M. P., and Goldstein G. (1984)a Contrasting biological activities of thymopoietin and splenin, two closely related polypeptide products of thymus and spleen.Proc. Natl. Acad. Sci. USA 81, 2847–2849.

    PubMed  CAS  Google Scholar 

  • Audhya T., Heavner G. A., Kroon D. J., and Goldstein G. (1984b) Cooperativity of thymopoietin 32–36 (the active site) and thymopoietin 38–45 in receptor binding.Reg. Peptides 9, 155–164.

    CAS  Google Scholar 

  • Ballivet M., Patrick J., Lee J., and Heinemann S. (1982) Molecular cloning of cDNA coding for the gamma subunit ofTorpedo acetylcholine receptor.Neurobiology 79, 4466–4470.

    CAS  Google Scholar 

  • Ballivet M., Nef P., Couturier S., Rungger D., Bader C. R., Bertrand D., and Cooper E. (1988) Electrophysiology of a chick neuronal nicotinic acetylcholine receptor expressed inXenopus oocytes after cDNA injection.Neuron 1, 847–852.

    PubMed  CAS  Google Scholar 

  • Basch R. S. and Goldstein G. (1974) Induction of T-cell differentiationin vitro by thymin, a purified polypeptide hormone of the thymus.Proc. Natl. Acad. Sci. USA 71, 1474–1478.

    PubMed  CAS  Google Scholar 

  • Basch R. S. and Goldstein G. (1975) Thymopoietininduced acquisition of responsiveness to T cell mitogens.Cell Immunol. 20, 218–228.

    PubMed  CAS  Google Scholar 

  • Berg D. K. and Halvorsen S. W. (1988) Genesencoding nicotinic receptor subtypes on neurons.Nature 334, 384–385.

    PubMed  CAS  Google Scholar 

  • Bertrand D., Ballivet M., and Rungger D. (1990) Activation and blocking of neuronal nicotinic acetylcholine receptor reconstituted in xenopus oocytes.Proc. Nat. Acad. Sci. USA 87, 1993–1997.

    PubMed  CAS  Google Scholar 

  • Betz H., Graham D., and Rehm H. (1982) Identification of polypeptides associated with a putative neuronal nicotinic acetylcholine receptor.J. Biol. Chem. 257, 11,390–11,394.

    CAS  Google Scholar 

  • Betz H. and Pfeiffer F. (1984) Monoclonal antibodies against the α-bungarotoxin binding protein of chick optic lobe.J. Neurosci. 4, 2095–2105.

    PubMed  CAS  Google Scholar 

  • Boksa P. and Quirion R. (1987) [3H]N-methylcarbamylcholine, a new radioligand specific for nicotinic acetylcholine receptors in brain.Eur. J. Pharmacol. 139, 323–333.

    PubMed  CAS  Google Scholar 

  • Boulter J., Evans K., Goldman D., Martin G., Treco D., Heinemann S., and Patrick J. (1986) Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor α-subunit.Nature 319, 368–374.

    PubMed  CAS  Google Scholar 

  • Boulter J., Connolly J., Deneris E., Goldman D., Heinemann S., and Patrick J. (1987) Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family.Proc. Natl. Acad. Sci. USA 84, 7763–7767.

    PubMed  CAS  Google Scholar 

  • Boulter J., O'Shea-Greenfield A., Duvoisin R. M., Connolly J. G., Wada E., Jensen A., Gardner P. D., Ballivet M., Deneris E. S., McKinnon D., Heinemann S., and Patrick J. (1990) α3, α5 and β4: three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster.J. Biol. Chem. 265, 4472–4482.

    PubMed  CAS  Google Scholar 

  • Brown D. A. and Fumagalli L. (1977) Dissociation of α-bungarotoxin binding and receptor block in the rat superior cervical ganglion.Brain Res. 129, 165–168.

    PubMed  CAS  Google Scholar 

  • Brown R. H., Schweitzer J. S., Audhya T., Goldstein G., and Dichter M. A. (1986) Immunoreactive thymopoietin in the mouse central nervous system.Brain Res. 381, 237–243.

    PubMed  CAS  Google Scholar 

  • Bursztajn S. and Gershon M. D. (1977) Discrimination between nicotinic receptors in vertebrate ganglia and skeletal muscle by alpha-bungarotoxin and cobra venoms.J. Physiol. (Lond) 269, 17–31.

    CAS  Google Scholar 

  • Changeux J.-P., Kasai M., and Lee C. Y. (1970) Use of a snake venom to characterize the cholinergic receptor protein.Proc. Natl. Acad. Sci. USA,67, 1241–1247.

    PubMed  CAS  Google Scholar 

  • Changeux J.-P. and Revah F. (1987) The acetylcholine receptor molecule: allosteric sites and the ion channel.Trends Neurosci. 10, 245–250.

    CAS  Google Scholar 

  • Changeux J.-P., Giraudet J., and Dennis M. (1987) The nicotinic acetylcholine receptor: molecular architecture of a ligand-regulated ion channel.Trends Pharmacol. Sci. 8, 459–465.

    CAS  Google Scholar 

  • Changeux J.-P. (1990) The nicotinic acetylcholine receptor: an allosteric protein prototype of ligand-gated ion channels.Trends Pharmacol. Sci. 11, 485–492.

    PubMed  CAS  Google Scholar 

  • Chiappinelli V. A. and Giacobini E. (1978) Time course of appearance of α-bungarotoxin binding sites during development of chick ciliary ganglion and iris.Neurochem. Res. 3, 465–478.

    PubMed  CAS  Google Scholar 

  • Chiappinelli V. A. (1984) Kappa-bungarotoxin: a probe for the neuronal nicotinic acetylcholine receptor.Trends Pharmacol. Sci. 7, 425–428.

    Google Scholar 

  • Chini B., Clementi F., Hukovic N., and Sher E. (1991) Neuronal type α-bungarotoxin receptors and the α5 nicotinic receptor subunit gene are expressed in neuronal and non neuronal human cell lines.Proc. Nat. Acad. Sci. USA, in press.

  • Clarke P. B. S., Schwartz R. D., Paul S. M., Pert C. B., and Pert A. (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine and [125I]α-bungarotoxin.J. Neurosci. 5, 1307–1315.

    PubMed  CAS  Google Scholar 

  • Collins A. C., Evans C. B., Miner L. L., and Marks M. J. (1986) Mecamylamine blockade of nicotine responses: evidence for two brain nicotinic receptors.Pharmacol. Biochem. Behav.,24, 1767–1773.

    PubMed  CAS  Google Scholar 

  • Conti-Tronconi B. M., Dunn S. M. J., Barnard E. A., Dolly J. O., Lai F. A., Ray N., and Raftery M. A. (1985) Brain and muscle nicotinic acetylcholine receptors are different but homologous proteins.Proc. Natl. Acad. Sci. USA 82, 5208–5212.

    PubMed  CAS  Google Scholar 

  • Cooper E., Couturier S., and Ballivet M. (1991) Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor.nature 350, 235–238.

    PubMed  CAS  Google Scholar 

  • Couturier S., Bertrand D., Matter J.-M., Hernandez M.-C., Bertrand S., Millar N., Valera S., Barkas T., and Ballivet M. (1990a) A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX.Neuron 5, 847–856.

    PubMed  CAS  Google Scholar 

  • Couturier S., Erkman L., Valera S., Rungger D., Bertrand S., Boulter J., Ballivet M., and Bertrand D. (1990b) α5, α3 and non-α3: three clustered avian genes encoding neuronal nicotinic acetylcholine receptor-related subunits.J. Biol. Chem. 265, 17,560–17,567.

    CAS  Google Scholar 

  • Criado M., Koenen M., and Sakmann B. (1990) Assembly of an adult type acetylcholine receptor in a mouse cell line transfected with rat muscle ε-subunit DNA.Fed. Eur. Biochem. Soc. 270, 95–99.

    CAS  Google Scholar 

  • Daniels M. P. and Vogel Z. (1980) Localization of α-bungarotoxin binding sites in synapses of the developing chick retina.Brain Res. 201, 45–46.

    PubMed  CAS  Google Scholar 

  • Daubas P., Devillers-Thiéry A., Geoffroy B., Martinez S., Bessis A., and Changeux J.-P. (1990) Differential expression of the neuronal acetylcholine receptor α2 subunit gene during chick brain development.Neuron 5, 49–60.

    PubMed  CAS  Google Scholar 

  • De La Garza R., McGuire T. J., Freedman R., and Hoffer B. J. (1987) Selective antagonism of nicotine actions in the rat cerebellum with α-bungarotoxin.Neuroscience 23, 887–891.

    PubMed  Google Scholar 

  • Deneris E. S., Connolly J., Boulter J., Wada E., Wada K., Swanson L. W., Patrick J., and Heinemann S. (1988) Primary structure and expression of β2: a novel subunit of neuronal nicotinic acetylcholine receptors.Neuron 1, 45–54.

    PubMed  CAS  Google Scholar 

  • Deneris E. S., Boulter J., Swanson L. W., Patrick J., and Heinemann S. (1989) β3: a new member of nicotinic acetylcholine receptor gene family is expressed in brain.J. Biol. Chem. 264, 6268–6272.

    PubMed  CAS  Google Scholar 

  • Deneris E. S., Connolly J., Rogers S. W., and Duvoisin R. (1991) Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors.Trends Pharmacol. Sci. 12, 34–40.

    PubMed  CAS  Google Scholar 

  • Deutch A. Y., Holliday J., Roth R. H., Chun L. L. Y., and Hawrot E. (1987) Immunohistochemical localization of a neuronal nicotinic acetylcholine receptor in mammalian brain.Proc. Natl. Acad. Sci. USA 84, 8697–8701.

    PubMed  CAS  Google Scholar 

  • Devillers-Thiéry A., Giraudat J., Bentaboulet M., and Changeux J.-P. (1983) Complete mRNA coding sequence of the acetylcholine binding α-subunit of Torpedo marmorata acetylcholine receptor: a model for the transmembrane organization of the polypeptide chain.Proc. Natl. Acad. Sci. USA 80, 2067–2071.

    PubMed  Google Scholar 

  • Dolly J. O. and Barnard E. A. (1984) Nicotinic acetylcholine receptors: an overview.Biochem. Pharmacol. 33, 841–858.

    PubMed  CAS  Google Scholar 

  • Duggan A. W., Hall J. G., and Lee C.-Y. (1976) α-Bungarotoxin cobra neurotoxin and excitation of Renshaw cells by acetylcholine.Brain Res. 107, 166–170.

    PubMed  CAS  Google Scholar 

  • Duvoisin R. M., Deneris E. S., Patrick J., and Heinemann S. (1989) The functional diversity of the neuronal nicotinic acetylcholine receptors is increased by a novel subunit: β4.Neuron,3, 487–496.

    PubMed  CAS  Google Scholar 

  • Falkeborn Y., Larsson C., Nordberg A., and Slanina A. (1983) A comparison of the regional onto-genesis of nicotine- and muscarine-like binding sites in mouse brain.Int. J. Dev. Neurosci. 1, 289–296.

    Google Scholar 

  • Falkeborn Y. and Lundberg P.-A. (1985) Regional [3H]acetylcholine and [3H]nicotine binding in developing mouse brain.Int. J. Dev. Neurosci. 3, 667–671.

    Google Scholar 

  • Fambrough D. M. (1979) Control of acetylcho-line receptors in skeletal muscle.Physiol. Rev. 59, 165–227.

    PubMed  CAS  Google Scholar 

  • Fiedler E. P., Marks M. J., and Collins A. C. (1987) Postnatal development of cholinergic enzymes and receptors in mouse brain.J. Neurochem. 49, 983–990.

    PubMed  CAS  Google Scholar 

  • Fiedler E. P., Marks M. J., and Collins A. C. (1990) Postnatal development of two nicotinic cholinergic receptors in seven mouse brain regions.Int. J. Dev. Neurosci. 8, 533–540.

    PubMed  CAS  Google Scholar 

  • Fornasari D., Chini B., Tarroni P., and Clementi F. (1990) Molecular cloning of human neuronal nicotinic receptor α3-subunit.Neuroscience Lett. 111, 351–356.

    CAS  Google Scholar 

  • Freeman J. A. (1977) Possible regulatory function of acetylcholine receptor in maintenance of retinotectal synapses.Nature 269, 218–222.

    PubMed  CAS  Google Scholar 

  • Fuchs J. L. and Hoppens K. S. (1987) α-Bungarotoxin binding in relation to functional organization of the rat suprachiasmatic nucleus.Brain Res. 407, 9–16.

    PubMed  CAS  Google Scholar 

  • Fuchs J. L. (1989) [125I]α-Bungarotoxin binding marks primary sensory areas of developing rat neocortex.Brain Res. 501, 223–234.

    PubMed  CAS  Google Scholar 

  • Galzi J.-L., Revah F., Bessis A., and Changeux J.-P. (1991) Functional architecture of the nicotinic acetylcholine receptor: from electric organ to brain.Ann. Rev. Pharmacol. 31, 37–72.

    CAS  Google Scholar 

  • Geertsen S., Afar R., Trifaró J.-M., and Quik M. (1988) Regulation of α-bungarotoxin sites in chromaffin cells in culture by nicotinic receptor ligands, K+ and cAMP.Mol. Pharmacol. 34, 549–556.

    PubMed  CAS  Google Scholar 

  • Goldman D., Deneris E., Luyten W., Kochhar A., Patrick J., and Heinemann S. (1987) Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system.Cell 48, 965–973.

    PubMed  CAS  Google Scholar 

  • Goldstein G. (1966) Thymitis and myasthenia gravis.Lancet II, 1164–1167.

    Google Scholar 

  • Goldstein G. (1968) The thymus and neuromuscular function: a substance in thymus which causes myositis and myasthenic neuromuscular block in guinea pigs.Lancet II, 119–122.

    Google Scholar 

  • Goldstein G. and Hofmann W. W. (1968) Electrophysiological changes similar to those of myasthenia gravis in rats with experimental autoimmune thymitis.J. Neurol. Neurosurg. Psychiat. 31, 453–459.

    PubMed  CAS  Google Scholar 

  • Goldstein G. (1971) Thymin: a thymic polypeptide causing the neuromuscular block of myasthenia gravis.Ann. NY Acad. Sci. 183, 230–240.

    PubMed  CAS  Google Scholar 

  • Goldstein G. (1974) Isolation of bovine thymin: a polypeptide hormone of the thymus.Nature 247, 11–14.

    PubMed  CAS  Google Scholar 

  • Goldstein G., Scheid M., Hammerling U., Boyse E. A., Schlesinger D. H., and Niall H. D. (1975) Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells.Proc. Natl. Acad. Sci. USA 72, 11–15.

    PubMed  CAS  Google Scholar 

  • Goldstein G., Scheid M. P., Boyse E. A., Schlesinger D. H., and Wauwe J. V. (1979) A synthetic pentapeptide with biological activity characteristic of the thymic hormone thymopoietin.Science 204, 1309,1310.

    Google Scholar 

  • Goldstein G. (1987) Overview of immunoregulation by thymopoietin.Immune Regulation by Characterized Polypeptides, 51–59.

  • Gotti C., Omini C., Berti F., and Clementi F. (1985) Isolation of a polypeptide from the venom ofBungarus multicinctus that binds to ganglia and blocks ganglionic transmission in mammals.Neuroscience 15, 563–575.

    PubMed  CAS  Google Scholar 

  • Gotti C., Esparis-Ogando A., and Clementi F. (1989) The α-bungarotoxin receptor purified from a human neuroblastoma cell line: biochemical and immunological characterization.Neuroscience 32, 759–767.

    PubMed  CAS  Google Scholar 

  • Gotti C., Esparis-Ogando A., Hanke W., Schlue R., Moretti M., and Clementi F. (1991) Purification and characterization of an α-bungarotoxin receptor that forms a functional nicotinic channel.Proc. Natl. Acad. Sci. USA 88, 3258–3262.

    PubMed  CAS  Google Scholar 

  • Guy H. R. and Hucho F. (1987) The ion channel of the nicotinic acetylcholine receptor.Trends Neurosci. 10, 318–321.

    CAS  Google Scholar 

  • Hartman S. H. and Claudio T. (1990) Coexpression of two distinct muscle acetylcholine receptor α-subunits during development.Nature 343, 372–375.

    PubMed  CAS  Google Scholar 

  • Jackson M. B., Imoto K., Mishina M., Konno T., Numa S., and Sakmann B. (1990) Spontaneous and agonist-induced openings of an acetylcholine receptor channel composed of bovine muscle α-, β- and δ-subunits.Pflügers Arch. 417, 129–135.

    PubMed  CAS  Google Scholar 

  • Jacob M. H. and Berg D. K. (1983) The ultrastructural localization of α-bungarotoxin binding sites in relation to synapses on chick ciliary ganglion neurons.J. Neurosci. 3, 260–271.

    PubMed  CAS  Google Scholar 

  • Jacob M. H., Berg D. K., and Lindstrom J. M. (1984) Shared antigenic determinant between theElectrophorus acetylcholine receptor and a synaptic component on chicken ciliary ganglion neurons.Proc. Natl. Acad. Sci. USA 81, 3223–3227.

    PubMed  CAS  Google Scholar 

  • Kalash J., Romita V., and Billiar R. B. (1989) Third ventricular injection of α-bungarotoxin decreases pulsatile luteinizing hormone secretion in the ovariectomized rat.Neuroendocrinology 49, 462–470.

    PubMed  CAS  Google Scholar 

  • Karlin A. (1974) The acetylcholine receptor: a progress report.Life Sci. 14, 1385–1415.

    PubMed  CAS  Google Scholar 

  • Kato E. and Narahashi T. (1982) Low sensitivity of the neuroblastoma cell cholinergic receptors to erabutoxins and α-bungarotoxin.Brain Res. 245, 159–162.

    PubMed  CAS  Google Scholar 

  • Kemp G., Bentley L., McNamee M. G., and Morley B. J. (1985) Purification and characterization of the α-bungarotoxin binding protein from rat brain.Brain Res. 347, 274–283.

    PubMed  CAS  Google Scholar 

  • Komuro K., Goldstein G., and Boyse E. A. (1975) Thymus-repopulating capacity of cells that can be induced to differentiate to T cellsin vitro.J. Immunol. 115, 195–198.

    Google Scholar 

  • Kouvelas E. D. and Greene L. A. (1976) The binding properties and regional ontogeny of receptors for α-bungarotoxin in chick brain.Brain Res. 113, 111–126.

    PubMed  CAS  Google Scholar 

  • Kouvelas E. D., Dichter M. A., and Greene L. A. (1978) Chick sympathetic neurons develop receptors for α-bungarotoxinin vitro but the toxin does not block nicotinic receptors.Brain Res. 154, 83–93.

    PubMed  CAS  Google Scholar 

  • Kullberg R., Owens J. L., Camacho P., Mandel G., and Brehm P. (1990) Multiple conductance classes of mouse nicotinic acetylcholine receptors expressed inXenopus oocytes.Proc. Natl. Acad. Sci. USA 87, 2067–2071.

    PubMed  CAS  Google Scholar 

  • Kurosaki T., Fukuda K., Konno T., Mori Y., Tanaka K.-I., Mishina M., and Numa S. (1987) Functional properties of nicotinic acetylcholine receptor subunits expressed in various combinations.Fed. Eur. Biochem. Soc. 214, 253–258.

    CAS  Google Scholar 

  • Leonard J. P. and Salpeter M. M. (1982) Calcium-mediated myopathy atneuromuscular junctions of normal and dystrophic muscle.Exp. Neurology 76, 121–138.

    CAS  Google Scholar 

  • Lindstrom J., Schoepfer R., and Whiting P. (1987) Molecular studies of the neuronal nicotinic acetylcholine receptor family.Mol. Neurobiol. 1, 281–337.

    PubMed  CAS  Google Scholar 

  • Lipton S. A., Aizenman E., and Loring R. H. (1987) Neural nicotinic acetylcholine responses in solitary mammalian retinal ganglion cells.Pflügers Arch. 410, 37–43.

    PubMed  CAS  Google Scholar 

  • Lipton S. A., Frosch M. P., Phillips M. D., Tauck D. L., and Aizenman E. (1988) Nicotinic antagonists enhance process outgrowth by rat retinal ganglion cells in culture.Science 239, 1293–1296.

    PubMed  CAS  Google Scholar 

  • Lipton S. A. and Kater S. B. (1989) Neurotransmitter regulation of neuronal outgrowth, plasticity and survival.Trends Neurosci. 12, 265–270.

    PubMed  CAS  Google Scholar 

  • Lo D. C., Pinkham J. L., and Stevens C. F. (1990) Influence of the γ subunit and expression system on acetylcholine receptor gating.Neuron 5, 857–866.

    PubMed  CAS  Google Scholar 

  • Loring R. H., Chiappinelli V. A., Zigmond R. E., and Cohen J. B. (1984) Characterization of a snake venom neurotoxin which blocks nicotinic transmission in the avian ciliary ganglion.Neuroscience 11, 989–999.

    PubMed  CAS  Google Scholar 

  • Loring R. H., Dahm L. M., and Zigmond R. E. (1985) Localization of α-bungarotoxin binding sites in the ciliary ganglion of the embryonic chick: an autoradiographic study at the light microscopic level.Neuroscience 14, 645–660.

    PubMed  CAS  Google Scholar 

  • Loring R. H. and Zigmond R. E. (1987) Ultrastructural distribution of [125I]toxin F binding sites on chick ciliary neurons: synaptic localization of a toxin that blocks ganglionic nicotinic receptors.J. Neurosci. 7, 2153–2162.

    PubMed  CAS  Google Scholar 

  • Loring R. H. and Zigmond R. E. (1988) Characterization of neuronal nicotinic receptors by snake venom neurotoxins.Trends Neurosci. 11, 73–78.

    PubMed  CAS  Google Scholar 

  • Loring R. H., Aizenman E., Lipton S. A., and Zigmond R. E. (1989) Characterization of nicotinic receptors in chick retina using a snake venom neurotoxin that blocks neuronal nicotinic receptor function.J. Neurosci. 9, 2423–2431.

    PubMed  CAS  Google Scholar 

  • Luetje C. W., Patrick J., and Seguela P. (1990a) Nicotine receptors in the mammalian brain.Fed. Amer. Soc. Exp. Biol. 4, 2754–2760.

    Google Scholar 

  • Luetje C. W., Wada K., Rogers S., Abramson S. N., Tsuji K., Heinemann S., and Patrick J. (1990b) Neurotoxins distinguish between different neuronal nicotinic acetylcholine receptor subunit combinations.J. Neurochem. 55, 632–640.

    PubMed  CAS  Google Scholar 

  • Luetje C. W., and Patrick J. (1991) Both α-and β-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors.J. Neurosci. 11, 837–845.

    PubMed  CAS  Google Scholar 

  • Lukas R. J., Audhya T., Goldstein G., and Lucero L. (1990) Interactions of the thymic polypeptide hormone thymopoietin with neuronal α-bungarotoxin binding sites and with muscle-type, but not ganglia-type, nicotinic acetylcholine receptor ligand-gated ion channels.Mol. Pharmacol. 38, 887–894.

    PubMed  CAS  Google Scholar 

  • Marks M. J. and Collins A. C. (1982) Characterization of nicotine binding in mouse brain and comparison with the binding of α-bungarotoxin and quinuclidinylbenzilate.Mol. Pharmacol. 22, 554–564.

    PubMed  CAS  Google Scholar 

  • Marks M. J., Burch J. B., and Collins A. C. (1983) Effects of chronic nicotine infusion on tolerance development and nicotinic receptors.J. Pharmacol. Exp. Ther. 226, 817–825.

    PubMed  CAS  Google Scholar 

  • Marks M. J. and Collins A. C. (1985) Tolerance, cross-tolerance and receptors after chronic nicotine or oxotremorine.Pharmacol. Biochem. Behav. 22, 283–291.

    PubMed  CAS  Google Scholar 

  • Marks M. J., Stitzel J. A., and Collins A. C. (1985) Time course study of the effects of chronic nicotine infusion on drug response and brain receptors.J. Pharmacol. Exp. Ther. 235, 619–628.

    PubMed  CAS  Google Scholar 

  • Marks M. J., Stitzel J. A., Romm E., Wehner J. M., and Collins A. C. (1986a) Nicotinic binding sites in rat and mouse brain: comparison of acetylcholine, nicotine and α-bungarotoxin.Mol. Pharmacol. 30, 427–436.

    PubMed  CAS  Google Scholar 

  • Marks M. J., Campbell S. M., Romm E., and Collins A. C. (1991) Genotype influences the development of tolerance to nicotine in the mouse.J. Pharmacol. Exp. Ther. 259, 392–402.

    PubMed  CAS  Google Scholar 

  • Marshall L. M. (1981) Synaptic localization of α-bungarotoxin binding which blocks nicotinic transmission at frog sympathetic neurons.Proc. Nat. Acad. Sci. USA 78, 1948–1952.

    PubMed  CAS  Google Scholar 

  • Matter J.-M., Matter-Sadzinski L. and Ballivet M. (1990) Expression of neuronal nicotinic acetylcholine receptor genes in the developing chick visual system.EMBO J. 9, 1021–1026.

    PubMed  CAS  Google Scholar 

  • McCarthy M. P., Earnest J. P., Young E. F., Choe S., and Stroud R. M. (1986) The molecular neurobiology of the acetylcholine receptor.Ann. Rev. Neurosci. 9, 383–413.

    PubMed  CAS  Google Scholar 

  • McLane K. E., Wu X., and Conti-Tronconi B. M. (1990) Identification of a brain acetylcholine receptor subunit able to bind α-bungarotoxin.J. Biol. Chem. 266, 9816–9824.

    Google Scholar 

  • McLane K. E., Wu X., Schoepfer R., Lindstrom J. M., and Conti-Tronconi B. M. (1991) Identification of sequence segments forming the α-bungarotoxin binding sites on two nicotinic acetylcholine receptor subunits from the avian brain.J. Biol. Chem. 266: 15,230–15,239.

    CAS  Google Scholar 

  • Messing A. (1982) Cholinergic agonist-induced down regulation of neuronal α-bungarotoxin receptors.Brain Res. 232, 479–484.

    PubMed  CAS  Google Scholar 

  • Miledi R. and Potter L. T. (1971) A cetylcholine receptors in muscle fibers.Nature 238, 599–603.

    Google Scholar 

  • Miller M. M., Silver J., and Billiar R. B. (1982) Effects of ovariectomy on the binding of [125I]α-bungarotoxin (2.2 and 3.3) to the suprachiasmatic nucleus of the hypothalamus: an in vivo autoradiographic analysis.Brain Res. 247, 355–364.

    PubMed  CAS  Google Scholar 

  • Miller M. M. and Billiar R. B. (1986a) A quantitative and morphometric evaluation of [125I]α-bungarotoxin in the rat hypothalamus.Brain Res. Bull. 16, 681–688.

    PubMed  CAS  Google Scholar 

  • Miller M. M. and Billiar R. B. (1986b) Relationship of putative nicotinic cholinergic receptors in the suprachiasmatic nucleus to levels of pineal serotonin N-acetyltransferase activity in the normally cycling female, the male and the ovariectomized rat.J. Pineal Res. 3, 159–168.

    PubMed  CAS  Google Scholar 

  • Miner L. L., Marks M. J., and Collins A. C. (1984) Classical genetic analysis of nicotine-induced seizures and nicotinic receptors.J. Pharmacol. Exp. Ther. 231, 545–554.

    PubMed  CAS  Google Scholar 

  • Miner L. L., Marks M. J., and Collins A. C. (1986) Genetic analysis of nicotine induced seizures and hippocampal nicotinic receptors in the mouse.J. Pharmacol. Exp. Ther. 239, 853–860.

    PubMed  CAS  Google Scholar 

  • Miner L. L. and Collins A. C. (1988) The effect of chronic nicotine treatment on nicotine induced seizures.Psychopharmacology 95, 52–55.

    PubMed  CAS  Google Scholar 

  • Mishina M., Kurosaki T., Tobimatsu T. Morimoto Y., Noda M., Yamamoto T., Terao M., Lindstrom J., Takahashi T., Kuno M., and Numa S. (1984) Expression of functional acetylcholine receptor from cloned cDNAs.Nature 307, 604–608.

    PubMed  CAS  Google Scholar 

  • Mishina M., Tobimatsu T., Imoto K., Tanaka K.-I., Fujita Y., Fukuda K., Kurasaki M., Takahashi H., Morimoto Y., Hirose T., Inayama S., Takahashi T., Kuno M., and Numa S. (1985) Location of functional regions of acetylcholine receptor α-subunit by site-directed mutagenesis.Nature 313, 364–369.

    PubMed  CAS  Google Scholar 

  • Mishina M., Takai T., Imoto K., Noda M. Takahashi T., Numa S., Methfessel C., and Sakmann B. (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor.Nature 321, 406–411.

    PubMed  CAS  Google Scholar 

  • Morel E., Vernet-der-Garabedian B., Raimond F., Audhya T. K., Goldstein G., and Bach J.-F. (1987) Myasthenic sera recognize the human acetylcholine receptor bound to thymopoietin.Eur. J. Immunol. 17, 1109–1113.

    PubMed  CAS  Google Scholar 

  • Morel E., Vernet-der-Garabedian B., Raimond F., Audhya T. K., Goldstein G., and Bach J.-F. (1987) Thymopoietin: a marker of the human nicotinic acetylcholine receptor.Ann. NY Acad. Sci. 540, 298–300.

    Google Scholar 

  • Morley B. J., Kemp G. E., and Salvaterra P. (1979) α-Bungarotoxin binding sites in the CNS.Life Sci. 24, 859–872.

    PubMed  CAS  Google Scholar 

  • Morley B. J. and Kemp G. E. (1981) Characterization of a putative nicotinic acetylcholine receptor in mammalian brain.Brain Res. Rev. 3, 81–104.

    CAS  Google Scholar 

  • Morley B. J., Farley G. R., and Javel E. (1983a) Nicotinic acetylcholine receptors in mammalian brain.Trends Pharmacol. Sci. 4, 225–227.

    CAS  Google Scholar 

  • Morley B. J., Rodriguez-Sierra J. F., and Clough R. W. (1983b) Increase in hypothalamic nicotinic acetylcholine receptors in prepuberal female rats administered estrogen.Brain Res. 278, 262–265.

    PubMed  CAS  Google Scholar 

  • Morley B. J. and Garner L. L. (1990) Light-dark variation in response to chronic nicotine treatment and the density of hypothalamic α-bungarotoxin receptors.Pharmacol. Biochem. Behav. 37, 239–245.

    PubMed  CAS  Google Scholar 

  • Mulle C. and Changeux J.-P. (1990) A novel type of nicotinic receptor in the rat central nervous system characterized by patch-clamp techniques.J. Neurosci. 10, 169–175.

    PubMed  CAS  Google Scholar 

  • Mulle C., Vidal C., Benoit P., and Changeux J.-P. (1991) Existence of different subtypes of nicotinic acetylcholine receptors in the rat habenulo-interpeduncular system.J. Neurosci. 11, 2588–2597.

    PubMed  CAS  Google Scholar 

  • Nef P., Oneyser C., Alliod C., Couturier S., Ballivet M. (1988) Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors.EMBO J. 7, 595–601.

    PubMed  CAS  Google Scholar 

  • Noda M., Takahashi H., Tanabe T., Toyosato M., Furutani Y., Hirose T., Asai M., Inayama S., Miyata T., and Numa S. (1982) Primary structure of α-subunit precursor ofTorpedo californica acetylcholine receptor deduced from cDNA sequence.Nature 298, 793–797.

    Google Scholar 

  • Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Furutani Y., Hirose T., Takashima H., Inayama S., Miyata T., and Numa S. (1983) Structural homology ofTorpedo californica acetylcholine receptor subunits.Nature 302, 528–532.

    PubMed  CAS  Google Scholar 

  • Norman R. I., Mehraban F., Barnard E. A., and Dolly J. O. (1982) Nicotinic acetylcholine receptor from chick optic lobe.Proc. Nat. Acad. Sci. USA 79, 1321–1325.

    PubMed  CAS  Google Scholar 

  • Ochoa E. L. M., Medrano S., de Carlin M. C. L., and Dilonardo A. M. (1988) Arg-lys-asp-val-tyr (thymopentin) accelerates the cholinergic-induced inactivation (desensitization) of reconstituted nicotinic receptor.Cell. Mol. Neurobiol. 8, 325–331.

    PubMed  Google Scholar 

  • Ochoa E. L. M., Chattopadhyay A., and McNamee M. G. (1989) Desensitization of the nicotinic acetylcholine receptor: molecular mechanisms and effect of modulators.Cell. Mol. Neurobiol. 9, 141–178.

    PubMed  CAS  Google Scholar 

  • Ochoa E. L. M., Li L., Plummer A., and McNammee M. G. (1990) Direct effects of thymopentin (arg-lysasp-val-tyr) on cholinergic agonist-induced slow inactivation of nicotinic acetylcholine receptor function.Mol. Pharmacol. 38, 863–871.

    PubMed  CAS  Google Scholar 

  • Oswald R. E. and Freeman J. A. (1981) Alpha-bungarotoxin binding and central nervous system nicotinic acetylcholine receptors.Neuroscience 6, 1–14.

    PubMed  CAS  Google Scholar 

  • Papke R. L. and Heinemann S. F. (1991) The role of the β4 subunit in determining the kinetic properties of rat neuronal nicotinic acetylcholine α3 receptors.J. Physiol. 440, 95–112.

    PubMed  CAS  Google Scholar 

  • Patrick J. and Stallcup W. B. (1977a) Immunological distinction between acetylcholine receptor and the α-bungarotoxin-binding component on sympathetic neurons.Proc. Nat. Acad. Sci. USA 74, 4689–4692.

    PubMed  CAS  Google Scholar 

  • Patrick J. and Stallcup B. (1977b) α-Bungarotoxin binding and cholinergic receptor function on a rat sympathetic nerve line.J. Biol. Chem. 252, 8629–8633.

    PubMed  CAS  Google Scholar 

  • Pauly J. R. and Horseman N. D. (1988a) Autoradiographic localization of bungarotoxin binding sites in the suprachiasmatic region of rat brain.Brain Res. 452, 105–112.

    PubMed  CAS  Google Scholar 

  • Pauly J. R. and Horseman N. D. (1988b) Perturbations of locomotor activity rhythms following suprachiasmatic bungarotoxin infusion.Physiol. Behav. 43, 859–865.

    PubMed  CAS  Google Scholar 

  • Pauly J. R., Grun E. U., and Collins A. C. (1990a) The effects of chronic corticosterone administration on sensitivity to nicotine and nicotinic cholinergic receptor binding are reversible.Neurosci. Abstr. 16, 204.

    Google Scholar 

  • Pauly J. R., Ullman E. A., and Collins A. C. (1990b) Strain differences in adrenalectomy-induced alterations in nicotine sensitivity in the mouse.Pharmacol. Biochem. Behav. 35, 171–179.

    PubMed  CAS  Google Scholar 

  • Pauly J. R., Marks M. J., Gross S. D., and Collins A. C. (1991) An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment.J. Pharmacol. Exp. Ther. 258, 1127–1136.

    PubMed  CAS  Google Scholar 

  • Quik M. and Lamarca M. V. (1982) Blockade of transmission in rat sympathetic ganglia by a toxin which co-purifies with α-bungarotoxin.Brain Res. 238, 385–399.

    PubMed  CAS  Google Scholar 

  • Quik M. and Trifaró J.-M. (1982) The α-bungarotoxin site and its relation to the cholinergic and nerve growth factor mediated increase in tyrosine hydroxylase activity in cultures of sympathetic ganglia and chromaffin cells.Brain Res. 244, 331–336.

    PubMed  CAS  Google Scholar 

  • Quik M., Geertsen S., and Trifaró J.-M. (1987) Marked up-regulation of the α-bungarotoxin site in adrenal chromaffin cells by specific nicotinic antagonists.Mol. Pharmacol. 31, 385–391.

    PubMed  CAS  Google Scholar 

  • Quik M. and Geertsen S. (1988) Neuronal nicotinic α-bungarotoxin sites.Can. J. Physiol. Pharmacol. 66, 971–979.

    PubMed  CAS  Google Scholar 

  • Quik M., Afar R., Audhya T., and Goldstein G. (1989) Thymopoietin, a thymic polypeptide, specifically interacts at neuronal nicotinic α-bungarotoxin receptors.J. Neurochem. 53, 1320–1323.

    PubMed  CAS  Google Scholar 

  • Quik M., Afar R., Geertsen S., Audhya T., Goldstein G., and Trifaro J.-M. (1990a) Thymopietin, a thymic polypeptide, regulates nicotinic α-bungarotoxin sites in chromaffin cells in culture.Mol. Pharmacol. 37, 90–97.

    PubMed  CAS  Google Scholar 

  • Quik M., Cohen R., Audhya T., and Goldstein G. (1990b) Thymopoietin interacts at the α-bungarotoxin site of and induces process formation in PC12 pheochromocytoma cells.Neuroscience 39, 139–150.

    PubMed  CAS  Google Scholar 

  • Quik M., Collier B., Audhya T., and Goldstein G. (1990c) Thymopoietin inhibits function and ligand binding to nicotinic receptors at the neuromuscular junction.J. Pharmacol. Exp. Ther. 254, 1113–1119.

    PubMed  CAS  Google Scholar 

  • Quik M., Babu U., Audhya T., and Goldstein G. (1991a) Evidence for thymopoietin and thymopoietin/ α-bungarotoxin/nicotinic receptors within the brain.Proc. Nat. Acad. Sci. USA 88, 2603–2607.

    PubMed  CAS  Google Scholar 

  • Quik M., El-Bizri H., Audhya T., and Goldstein G. (1991b) Thymopoietin, a potent antagonist at nicotinic receptors in C2 muscle cell cultures.Mol. Pharmacol. 39, 324–331.

    PubMed  CAS  Google Scholar 

  • Quik M., Philie J., and Goldstein G. (1992) Thymopoietin a thymic polypeptide, prevents nicotinic agonist induced degeneration in neonatal muscle cells in culture.Neuroscience, submitted.

  • Ravdin P. M. and Berg D. K. (1979) Inhibition of neuronal acetylcholine sensitivity by α-toxins fromBungarus multicinctus venom.Proc. Natl. Acad. Sci. USA 76, 2072–2076.

    PubMed  CAS  Google Scholar 

  • Revah F., Mulle C., Pinset C., Audhya T. Goldstein G., and Changeux J.-P. (1987) Calcium-dependent effect of the thymic polypeptide thymopoietin on the desensitization of the nicotinic acetylcholine receptor.Proc. Natl. Acad. Sci. USA 84, 3477–3481.

    PubMed  CAS  Google Scholar 

  • Sah D. W. Y., Loring R. H., and Zigmond R. E. (1987) Long-term blockade by toxin F of nicotinic synaptic potentials in cultured sympathetic neurons.Neuroscience 3, 867–874.

    Google Scholar 

  • Saiani L., Kageyama H., Conti-Tronconi B. M., and Guidotti A. (1984) Purification and characterization of a bungarotoxin polypeptide which blocks nicotinic receptor function in primary culture of adrenal chromaffin cells.Mol. Pharmacol. 25, 327–334.

    PubMed  CAS  Google Scholar 

  • Sakmann B., Methfessel C., Mishina M., Takahashi T., Takai T., Kurasaki M., Fukuda K., and Numa S. (1985) Role of acetylcholine receptor subunits in gating of the channel.Nature 318, 538–543.

    PubMed  CAS  Google Scholar 

  • Salpeter M. M. and Loring R. H. (1985) Nicotinic acetylcholine receptors in vertebrate muscle: properties, distribution, and neural control.Prog. Neurobiol. 25, 297–325.

    PubMed  CAS  Google Scholar 

  • Schaffner A. E. and Olek A. J. (1986) The developmental appearance of α-bungarotoxin binding sites on rodent spinal cord neurons in cell culture.Dev. Brain Res. 25, 239–247.

    CAS  Google Scholar 

  • Scheid M. P., Goldstein G., and Boyse E. A. (1978) The generation and regulation of lymphocyte populations: evidence from differentiative induction systemsin vitro.J. Exp. Med. 147, 1727–1743.

    PubMed  CAS  Google Scholar 

  • Schmidt J. (1977) Drug binding properties of an α-bungarotoxin binding component from rat brain.Mol. Pharmacol. 13, 283–290.

    PubMed  CAS  Google Scholar 

  • Schoepfer R., Conroy W. G., Whiting P., Gore M., and Lindstrom J. (1990) Brain α-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily.Neuron 5, 35–48.

    PubMed  CAS  Google Scholar 

  • Schulz D. H., Loring R. H., Aizenman E., and Zigmond R. E. (1991) Autoradiographic localization of putative nicotinic receptors in the rat brain using [125I] neuronal bungarotoxin.J. Neurosci. 11, 287–297.

    PubMed  CAS  Google Scholar 

  • Schwartz R. D., McGee R., and Kellar K. J. (1982) Nicotinic cholinergic receptors labeled by [3H] acetylcholine in rat brain.Mol. Pharmacol. 22, 55–62.

    CAS  Google Scholar 

  • Smolen A. J. (1983) Specific binding of α-bungarotoxin to synaptic membranes in rat sympathetic ganglion: computer best-fit analysis of electron microscope radioautographs.Brain Res. 289, 177–188.

    PubMed  CAS  Google Scholar 

  • Steinbach J. H. (1989) Structural and functional diversity in vertebrate skeletal muscle nicotinic acetylcholine receptors.Ann. Rev. Physiol. 51, 353–365.

    CAS  Google Scholar 

  • Steinbach J. H. and Ifune C. (1989) How many kinds of nicotinic acetylcholine receptors are there?Trends Neurosci. 12, 3–6.

    PubMed  CAS  Google Scholar 

  • Stevens C. F. (1985) AChR structure: a new twist in the story.Trends Neurosci. 8, 1,2.

    CAS  Google Scholar 

  • Stroud R. M., McCarthy M. P., and Shuster M. (1990) Nicotinic acetylcholine receptor superfamily of ligand gated ion channels.Biochemistry 29, 11,009–11,023.

    CAS  Google Scholar 

  • Sunshine G. H., Basch R. S., Coffey R. G., Cohen K. W., Goldstein G., and Hadden J. W. (1978) Thymopoietin enhances the allogeneic response and cyclic GMP levels of mouse peripheral, thymus-derived lymphocytes.J. Immunol. 120, 1594–1599.

    PubMed  CAS  Google Scholar 

  • Swanson L. W., Lindstrom J., Tzartos S., Schmued L. C., O'Leary D. M., and Cowan W. M. (1983) Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in chick midbrain.Proc. Natl. Acad. Sci. USA 80, 4532–4536.

    PubMed  CAS  Google Scholar 

  • Swanson L. W., Simmons D. M., Whiting P. J., and Lindstrom J. (1987) Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system.J. Neurosci. 7, 3334–3342.

    PubMed  CAS  Google Scholar 

  • Syapin P. J., Salvaterra P. M., and Engelhardt J. K. (1982) Neuronal-like features of TE671 cells: presence of a functional nicotinic cholinergic receptor.Brain Res. 231, 365–377.

    PubMed  CAS  Google Scholar 

  • Takai T., Noda M., Mishina M., Shimizu S., Furutani Y., Kayano T., Ikeda T., Kubo T., Takahashi H., Takahashi T., Kuno M., and Numa S. (1985) Cloning sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle.Nature 315, 761–764.

    PubMed  CAS  Google Scholar 

  • Twomey J. J., Goldstein G., Lewis V. M., Bealmear P. M., and Good R. A. (1977) Bioassay determinations of thymopoietin and thymic hormone levels in human plasma.Proc. Natl. Acad. Sci. USA 74, 2541–2545.

    PubMed  CAS  Google Scholar 

  • Venkatasubramanian K., Audhya T., and Goldstein G. (1986) Binding of thymopoietin to the acetylcholine receptor.Proc. Natl. Acad. Sci. USA 83, 3171–3174.

    PubMed  CAS  Google Scholar 

  • Vidal C. and Changeux J.-P. (1989) Pharmacological profile of nicotinic acetylcholine receptors in the rat prefrontal cortex: an electrophysiological study in a slice preparation.Neuroscience 29, 261–270.

    PubMed  CAS  Google Scholar 

  • Vogel Z. and Nirenberg M. (1976) Localization of acetylcholine receptors during synaptogenesis in retina.Proc. Natl. Acad. Sci. USA 73, 1806–1810.

    PubMed  CAS  Google Scholar 

  • Wada E., Wada K., Boulter J., Deneris E., Heinemann S., Patrick J., and Swanson L. W. (1989) Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat.J. Comp. Neurol. 284, 314–335.

    PubMed  CAS  Google Scholar 

  • Wada K., Ballivet M., Boulter J., Connolly J., Wada E., Deneris E. S., Swanson L. W., Heinemann S., and Patrick J. (1988) Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor.Science 240, 330–334.

    PubMed  CAS  Google Scholar 

  • Wade P. D. and Timiras P. S. (1980) Whole brain and regional [125I]-bungarotoxin binding in developing rat.Brain Res. 181, 381–389.

    PubMed  CAS  Google Scholar 

  • Wan K. K. and Lindstrom J. (1984) Nicotinic acetylcholine receptor.The Receptors I, 377–430.

    Google Scholar 

  • Whiting P. and Lindstrom J. (1986) Pharmacological properties of immuno-isolated neuronal nicotinic receptors.J. Neurosci. 6, 3061–3069.

    PubMed  CAS  Google Scholar 

  • Whiting P. and Lindstrom J. (1987) Purification and characterization of a nicotinic acetylcholine receptor from rat brain.Proc. Natl. Acad. Sci. USA 84, 595–599.

    PubMed  CAS  Google Scholar 

  • Whiting P., Liu R., Morley B. J., and Lindstrom J. (1987a) Structurally different neuronal nicotinic acetylcholine receptor subtypes purified and characterized using monoclonal antibodies.J. Neurosci. 7, 4005–4016.

    PubMed  CAS  Google Scholar 

  • Whiting P. J., Schoepfer R., Swanson L. W., Simmons D. M., and Lindstrom J. M. (1987b) Functional acetylcholine receptor in PC12 cells reacts with a monoclonal antibody to brain nicotinic receptors.Nature 327, 515–518.

    PubMed  CAS  Google Scholar 

  • Witzemann V., Barg B., Nishikawa Y., Sakmann B., and Numa S. (1987) Differential regulation of muscle acetylcholine receptor γ- and ε-subunit mRNAs.Fed. Eur. Biochem. Soc. 223, 104–112.

    CAS  Google Scholar 

  • Witzemann V., Stein E., Barg B., Konno T., Koenen M., Kues W., Criado M., Hofmann M., and Sakmann B. (1990) Primary structure and functional expression of the α-, β-, γ-, δ- and ε-subunits of the acetylcholine receptor from rat muscle.Eur. J. Biochem. 194, 437–448.

    PubMed  CAS  Google Scholar 

  • Wong L. A. and Gallagher J. P. (1989) A direct nicotinic receptor-mediated inhibition recorded intracellularlyin vitro.Nature 341, 439–442.

    PubMed  CAS  Google Scholar 

  • Wong L. A. and Gallagher J. P. (1991) Pharmacology of nicotinic receptor-mediated inhibition in rat dorsolateral septal neurones.J. Physiol. (Lond) 436, 325–346.

    CAS  Google Scholar 

  • Zatz M. and Brownstein M. J. (1981) Injection of α-bungarotoxin near the suprachiasmatic nucleus blocks the effects of light on nocturnal pineal enzyme activity.Brain Res. 213, 438–442.

    PubMed  CAS  Google Scholar 

  • Zhang Z. W. and Feltz P. (1990) Nicotinic acetylcholine receptors in porcine hypophyseal intermediate lobe cells.J. Physiol. (Lond) 422, 83–101.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quik, M. Thymopoietin, a thymic polypeptide, potently interacts at muscle and neuronal nicotinic α-bungarotoxin receptors. Mol Neurobiol 6, 19–40 (1992). https://doi.org/10.1007/BF02935565

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935565

Index Entries

Navigation