Skip to main content
Log in

Nicotinic receptor-associated 43K protein and progressive stabilization of the postsynaptic membrane

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

An extrinsic membrane protein of apparent molecular mass 43 kDa is specifically localized in postsynaptic membranes closely associated with the nicotinic acetylcholine receptor (AChR). Since its discovery in 1977, biochemical and morphological studies have combined to provide relatively clear pictures of 43K protein structure and subcellular compartmentalization. Nevertheless, despite these advances, the precise function of this synapse-specific protein remains unclear. Data gathered in recent years indicate that the postsynaptic apparatus develops through the incremental agglomeration of receptor microaggregates; evidence derived from a number of sources points to a role for 43K protein in certain underlying reactions. In this paper, I review 43K protein structural and anatomical data and analyze evidence for its role in the organization and maintenance of the postsynaptic membrane. Finally, I offer a model presenting a view of the role of 43K protein in the ontogeny of the motor endplate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson M. J. and Cohen M. W. (1977) Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells.J. Physiol. 268, 757–773.

    PubMed  CAS  Google Scholar 

  • Anderson M. J., Cohen M. W., and Zorychta E. (1977) Effects of innervation on the distribution of acetylcholine receptors on cultured muscle cells.J. Physiol. 268, 731–756.

    PubMed  CAS  Google Scholar 

  • Angelides K. J. (1986) Fluorescently labeled Na+ channels are localized and immobilized to synapses of innervated muscle fibers.Nature 321, 63–66.

    Article  PubMed  CAS  Google Scholar 

  • Anthony D. T., Schuetze S. M., and Rubin L. L. (1984) Transformation by Rous sarcoma virus prevents acetylcholine receptor clustering on cultured chicken muscle fibers.Proc. Natl. Acad. Sci. USA 81, 2265–2269.

    Article  PubMed  CAS  Google Scholar 

  • Anthony D. T., Jacobs-Cohen R. J., Marazzi G., and Rubin L. L. (1988) A molecular defect in virally transformed muscle cells that cannot cluster acetylcholine receptors.J. Cell Biol. 106, 1713–1721.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin T. J., Theriot J. A., Yoshihara C. M., and Burden S. J. (1988) Regulation of transcript encoding the 43K subsynaptic protein during development and after denervation.Development 104, 557–564.

    PubMed  CAS  Google Scholar 

  • Barrantes F. J., Neugebauer D.-Ch., and Zingsheim H. P. (1980) Peptide extraction by alkaline treatment is accompanied by rearrangement of the membranebound acetylcholine receptor fromTorpedo marmorata.FEBS Lett. 112, 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Beam K. G., Caldwell J. H., and Campbell J. T. (1985) Na channels in skeletal muscle concentrated near the neuromuscular junction.Nature 313, 588–590.

    Article  PubMed  CAS  Google Scholar 

  • Berg D. K. and Hall Z. W. (1975) Loss of α-bungarotoxin from junctional and extrajunctional acetylcholine receptors in rat diaphragm muscle in vivo and in organ culture.J. Physiol. 252, 771–789.

    PubMed  CAS  Google Scholar 

  • Becker, C.-M., Hoch, W., and Betz H. (1989) Sensitive immunoassay shows selective association of peripheral and integral membrane proteins of the inhibitory glycine receptor complex.J. Neurochem. 53, 124–131.

    Article  PubMed  CAS  Google Scholar 

  • Bloch R. J. (1979) Dispersal and reformation of acetylcholine receptor clusters of cultured rat myotubes treated with inhibitors of energy metabolism.J. Cell Biol. 82, 626–643.

    Article  PubMed  CAS  Google Scholar 

  • Bloch R. J. (1983) Acetylcholine receptor clustering in rat myotubes: requirement for Ca2+ and effects of drugs which depolymerize microtubules.J. Neurosci. 3, 2670–2680.

    PubMed  CAS  Google Scholar 

  • Bloch R. J. (1986) Actin at receptor-rich domains of isolated acetylcholine receptor clusters.J. Cell Biol. 102, 1447–1458.

    Article  PubMed  CAS  Google Scholar 

  • Bloch R. J. and Froehner S. C. (1987) The relationship of the postsynaptic 43K protein to acetylcholine receptors in receptor clusters isolated from cultured rat myotubes.J. Cell Biol. 104, 645–654.

    Article  PubMed  CAS  Google Scholar 

  • Bloch R. J. and Borrow J. S. (1989) An unusual β-spectrin associated with clustered acetylcholine receptors.J. Cell Biol. 108, 481–493.

    Article  PubMed  CAS  Google Scholar 

  • Bloch R. J. and Pumplin D. W. (1988) Molecular events in synaptogenesis: nerve-muscle adhesion and postsynaptic differentiation.Am. J. Physiol. 254, C345-C364.

    PubMed  CAS  Google Scholar 

  • Bloch R. J., Steinbach J. H., Merlie J. P., and Heinemann S. (1986) Collagenase digestion alters the organization and turnover of junctional acetylcholine receptors.Neurosci. Lett. 66, 113–119.

    Article  PubMed  CAS  Google Scholar 

  • Boivin P. (1988) Role of the phosphorylation of red blood cell membrane proteins.Biochem. J. 256, 689–695.

    PubMed  CAS  Google Scholar 

  • Bourgeois J.-P., Popot J.-L., Ryter A., and Changeux J.-P. (1978) Quantitative studies on the localization of the cholinergic receptor protein in the normal and denervated electroplaque fromElectrophorus electricus.J. Cell Biol. 79, 200–216.

    Article  PubMed  CAS  Google Scholar 

  • Bridgman P. C., Carr C., Pedersen S. E., and Cohen J. B. (1987) Visualization of the cytoplasmic surface ofTorpedo postsynaptic membranes by freeze-etch and immunoelectron microscopy.J. Cell Biol. 105, 1829–1846.

    Article  PubMed  CAS  Google Scholar 

  • Burden S. J. (1985) The subsynaptic 43kDa protein is concentrated at developing nerve-muscle synapsesin vitro.Proc. Natl. Acad. Sci. USA 82, 8270–8273.

    Article  PubMed  CAS  Google Scholar 

  • Burden S. J., DePalma R. L., and Gottesman G. S. (1983) Crosslinking of proteins in acetylcholine receptor-rich membranes: association between the β-subunit and the 43 kDa subsynaptic protein.Cell 35, 687–692.

    Article  PubMed  CAS  Google Scholar 

  • Burn P. (1988) Amphitrophic proteins: A new class of membrane proteins.Trends Biochem. Sci. 13, 79–83.

    Article  PubMed  CAS  Google Scholar 

  • Burn P. and Burger M. M. (1987) The cytoskeletal protein vinculin contains transformation-sensitive, covalently bound lipid.Science 235, 476–479.

    Article  PubMed  CAS  Google Scholar 

  • Carr C., Fischbach G. D., and Cohen J. B. (1989) A novel Mr 87,000 protein associated with acetylcholine receptors inTorpedo electric organ and vertebrate skeletal muscle.J. Cell Biol. 109, 1753–1764.

    Article  PubMed  CAS  Google Scholar 

  • Carr, C., McCourt D., and Cohen J. B. (1987) The 43-kilodalton protein ofTorpedo nicotinic postsynaptic membranes: purification and determination of primary structure.Biochemistry 26, 7090–7102.

    Article  PubMed  CAS  Google Scholar 

  • Cartaud A., Courvalin J. C., Ludosky M. A. and Cartaud J. (1989) Presence of a protein immunologically related to lamin B in the postsynaptic membrane ofTorpedo marmorata electrocyte.J. Cell Biol. 109, 1745–1752.

    Article  PubMed  CAS  Google Scholar 

  • Cartaud J., Sobel A., Rousselet A., Devaux P. F., and Changeux J.-P. (1981) Consequences of alkaline treatment for the ultrastructure of the acetylcholine-receptor-rich membranes fromTorpedo marmorata electric organ.J. Cell Biol. 90, 418–426.

    Article  PubMed  CAS  Google Scholar 

  • Catterall W. A. (1991) Excitation-contraction coupling in vertebrate skeletal muscle: a tale of two calcium channels.Cell 64, 871–874.

    Article  PubMed  CAS  Google Scholar 

  • Chang C. C. and Huang M. C. (1975) Turnover of junctional and extrajunctional acetylcholine receptors of the rat diaphragm.Nature 253, 643–644.

    Article  PubMed  CAS  Google Scholar 

  • Changeux J.-P. (1986) Coexistence of neuronal messengers and molecular selection.Prog. Brain Res. 68, 373–403.

    Article  PubMed  CAS  Google Scholar 

  • Changeux J.-P., Babinet C., Bessereau J. L., Bessis A., Cartaud J., Daubas P., Devillers-Thiéry A., Duclert A., Hill J. A., Jasmin B., Klarsfeld A., Laufer R., Nghiêm H. O., Piette J., Roa M., and Salmon A. M. (1990) Comparmentalization of acetylcholine receptor gene expression during development of the neuromuscular junction,Cold Spring Harbor Symposia on Quantitative Biology, vol.55, pp. 381–396.

    PubMed  CAS  Google Scholar 

  • Cohen M. W. and Weldon P. R. (1980) Localization of acetylcholine receptors and synaptic ultrastructure at nerve-muscle contacts in culture: dependence on nerve type.J. Cell Biol. 86, 388–401.

    Article  PubMed  CAS  Google Scholar 

  • Daniels M. P. (1990) Localization of actin, β-spectrin 43×103 Mr and 58×103 Mr proteins to receptorenriched domains of newly formed acetycholine receptor aggregates in isolated myotube membranes.J. Cell Sci. 97, 615–627.

    PubMed  CAS  Google Scholar 

  • Devreotes P. N. and Fambrough D. M. (1975) Acetylcholine receptor turnover in membranes of developing muscle fibers.J. Cell Biol. 65, 335–358.

    Article  PubMed  CAS  Google Scholar 

  • Edelstein N. G., Catterall W. A., and Moon R. T. (1988) Identification of a 33-kilodalton cytoskeletal protein with high affinity for the sodium channel.Biochemistry 27, 1818–1822.

    Article  PubMed  CAS  Google Scholar 

  • Elliott J., Blanchard S. G., Wu W., Miller J., Strader C. D., Hartig P., Moore H. P., Racs J., and Raftery M. A. (1980) Purification ofTorpedo californica possynaptic membranes and fractionation of their constituent proteins.Biochem. J. 185, 667–677.

    PubMed  CAS  Google Scholar 

  • Fertuck H. C. and Salpeter M. M. (1976) Quantitation of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after125I-α-bungarotoxin binding at mouse neuromuscular junctions.J. Cell Biol. 69, 144–158.

    Article  PubMed  CAS  Google Scholar 

  • Flucher B. E. and Daniels M. P. (1989) Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 kd protein.Neuron 3, 163–175.

    Article  PubMed  CAS  Google Scholar 

  • Frail D. E., Mudd J., Shah V., Carr C., Cohen J. B., and Merlie J. P. (1987) cDNAs for the postsynaptic 43-kDa protein ofTorpedo electric organ encode two proteins with different carboxyl termini.Proc. Natl. Acad. Sci. USA 84, 6302–6306.

    Article  PubMed  CAS  Google Scholar 

  • Frail D. E., McLaughlin L. L., Mudd J., and Merlie J. P. (1988) Identification of the mouse muscle 43,000-Dalton acetycholine receptor-associated protein (RAPsyn) by cDNA cloning.J. Cell Chem. 263, 15,602–15,607.

    CAS  Google Scholar 

  • Frail D. E., Musil L. S., Buonanno A., and Merlie J. P. (1989) Expression of RAPsyn (43K protein) and nicotinic acetylcholine receptor genes is not coordinately regulated in mouse muscle.Neuron 2, 1077–1086.

    Article  PubMed  CAS  Google Scholar 

  • Froehner S. C. (1984) Peripheral proteins of postsynaptic membranes fromTorpedo electric organ identified with monoclonal antibodies.J. Cell Biol. 99, 88–96.

    Article  PubMed  CAS  Google Scholar 

  • Froehner S. C. (1986) The role of the postsynaptic cytoskeleton in AChR organization.Trends Neurosci. 9, 37–41.

    Article  CAS  Google Scholar 

  • Froehner S. C. (1989) Expression of RNA transcripts for the postsynaptic 43 kDa protein in innervated and denervated rat skeletal muscle.FEBS Lett. 249, 229–233.

    Article  PubMed  CAS  Google Scholar 

  • Froehner S. C. (1991) The submembrane machinery for nicotinic acetylcholine receptor clustering.J. Cell Biol. 114, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Froehner S. C., Gulbrandsen V., Hyman C., Jeng A. Y., Neubig R. R., and Cohen J. B. (1981) Immunofluorescence localization at the mammalian neuromuscular junction of the Mr 43,000 protein ofTorpedo postsynaptic membranes.Proc. Natl. Acad. Sci. USA 78, 5230–5234.

    Article  PubMed  CAS  Google Scholar 

  • Froehner S. C., Murmame A. A., Tobler M., Peng H. B., and Sealock R. A. (1987) A postsynaptic Mr 58,000 (58K) protein concentrated at acetylcholine receptor-rich sites inTorpedo electroplaques and skeletal muscle.J. Cell Biol. 104, 1633–1646.

    Article  PubMed  CAS  Google Scholar 

  • Froehner S. C., Luetje C. W., Scotland P. B., and Patrick J. (1990) The postsynaptic 43K protein clusters muscle nicotinic acetylcholine receptors inXenopus oocytes.Neuron 5, 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli G., Balbi S., Cangiano A., and Lømo T. (1990) Regulation of turnover and number of acetylcholine receptors at neuromuscular junctions.Neuron 4, 563–569.

    Article  PubMed  CAS  Google Scholar 

  • Gibrat J.-F., Garnier J., and Robson B. (1987) Further development of protein secondary structure prediction using information theory: new parameters and consideration of residue pairs.J. Mol. Biol. 198, 425–443.

    Article  PubMed  CAS  Google Scholar 

  • Goldman D., Boulter J., Heinemann S., and Patrick J. (1985) Muscle denervation increases the level of two mRNAs coding for the acetylcholine receptor α-subunit.J. Neurosci. 5, 2553–2558.

    PubMed  CAS  Google Scholar 

  • Gordon A. S., Davis C. G., and Diamond I. (1977) Phosphorylation of membrane proteins at a cholinergic synapse.Proc. Natl. Acad. Sci. USA 74, 263–267.

    Article  PubMed  CAS  Google Scholar 

  • Gordon A. S., Davis C. G., Milfay D., Kaur J., and Diamond I. (1980) Membrane-bound protein kinase activity in acetylcholine receptor-enriched membranes.Biochim. Biophys. Acta 600, 421–431.

    Article  PubMed  CAS  Google Scholar 

  • Haimovich B., Schotland D. L., Fieles D. L., and Barchi R. W. (1987) Localization of sodium channel subtypes in adult rat skeletal muscle using channel-specific monoclonal antibodies.J. Neurosci. 7, 2957–2966.

    PubMed  CAS  Google Scholar 

  • Hamilton S. L., McLaughlin M., and Karlin A. (1979) Formation of disulfide-linked oligomers to acetylcholine receptor in membrane fromTorpedo electric tissue.Biochemistry 18, 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Hartman D. S., Millar N. S., and Claudio T. (1991) Extracellular synaptic factors induce clustering of acetylcholine receptors stably expressed in fibroblasts.J. Cell Biol. 115, 165–177.

    Article  PubMed  CAS  Google Scholar 

  • Hill J. A., Nghiêm H.-O., and Changeux J.-P. (1991) Serine-specific phosphorylation of nicotinic receptor-associated 43K protein.Biochemistry 30, 5579–5585.

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt T., Holets V. R., Staines W., Meister B. Melander T., Schalling M., Schultzberg M., Freedman J., Bjorklund H., Olson L., Lindk B., Elfvin L. G., Lundberg J., Lindgren J. A., Samuelsson B., Terenius L., Post C., Everitt B., and Goldstein M. (1986) Coexistence of neuronal messengers: An overview.Prog. Brain Res. 68, 33–70.

    Article  PubMed  Google Scholar 

  • Huganir R. L. and Greengard P. (1990) Regulation of neurotransmitter receptor desensitization by protein phosphorylation.Neuron 5, 555–567.

    Article  PubMed  CAS  Google Scholar 

  • Jasmin B. J., Cartaud A., Ludosky M. A., Changeux, J.-P., and Cartaud J. (1990) Asymmetric distribution of dystrophin in developing and adultTorpedo marmorata electrocyte: evidence for its association with the acetylcholine receptor-rich membrane.Proc. Natl. Acad. Sci. USA 87, 3938–3941.

    Article  PubMed  CAS  Google Scholar 

  • Kellie S. and Wigglesworth N. M. (1987) The cytoskeletal protein vinculin is acylated by myristic acid.FEBS Lett. 213, 428–432.

    Article  PubMed  CAS  Google Scholar 

  • Khurana T. S., Hoffman E. P., and Kunkel L. M. (1990) Identification of a chromosome 6-encoded dystrophin-related protein.J. Biol Chem. 265, 16,717–16,720.

    CAS  Google Scholar 

  • Klarsfeld A. and Changeux J.-P. (1985) Activity regulates the level of aceylcholine receptor alphasubunit mRNA in cultured chick myotubes.Proc. Natl. Acad. Sci USA 82, 4558–4562

    Article  PubMed  CAS  Google Scholar 

  • Klymkowsky M. W., Heuser J. E., and Stroud R. M. (1980) Protease effects on the structure of acetylcholine receptor membranes fromTorpedo californica.J. Cell Biol. 85, 823–838.

    Article  PubMed  CAS  Google Scholar 

  • Ko P., Anderson M. J., and Cohen M. W. (1977) Denervated skeletal muscle fibers develop patches of high acetylcholine receptor density.Science 196, 540–542.

    Article  PubMed  CAS  Google Scholar 

  • Kordeli E., Cartaud J., Nghiêm H.-O., Pradel L. A., Dubreuil C., Paulin D., and Changeux J.-P. (1986) Evidence for a polarity in the distribution of proteins from the cytoskeleton inTorpedo marmorata electrocytes.J. Cell Biol. 102, 748–761.

    Article  PubMed  CAS  Google Scholar 

  • Kordeli E., Cartaud J., Nghiêm H.-O., Devillers-Thiéry A., and Changeux J.-P. (1989) Asynchronous assembly of the acetylcholine receptor and of the 43-kDa v1 protein in the postsynaptic membrane of developingTorpedo marmorata electrocyte.J. Cell Biol. 108, 127–139.

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides T. and Ziff E. (1988) Leucine zippers offos, jun, and GCN4 dictate dimerization specificity and thereby control DNA binding.Nature 336, 646–651.

    Article  PubMed  CAS  Google Scholar 

  • Krikorian J. G. and Daniels M. P. (1989) Reorganization and stabilization of acetylcholine receptor aggregates on rat myotubes.Develop. Biol. 131, 524–538.

    Article  PubMed  CAS  Google Scholar 

  • Kuromi H. and Kidokoro Y. (1984) Nerve disperses preexisting acetylcholine receptor clusters prior to induction of receptor accumulation in Xenopus muscle cultures.Dev. Biol. 103, 53–61.

    Article  PubMed  CAS  Google Scholar 

  • Lacerda A. E., Kim H. S., Ruth P. Perez-Reyes E. Flockerzi V., Hofmann F., Birnbaumer L., and Brown A. M. (1991) Normalization of current kinetics by interaction between α1 and β subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel.Nature 352, 527–530.

    Article  PubMed  CAS  Google Scholar 

  • Landschulz W. H., Johnson P. F., and McKnight S. L. (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteinsScience 240, 1759–1764.

    Article  PubMed  CAS  Google Scholar 

  • Landschulz W. H., Johnson P. F., and McKnight S. L. (1989) The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite.Science 243, 1681–1688.

    Article  PubMed  CAS  Google Scholar 

  • LaRochelle W. J. and Froehner S. C. (1986) Determination of the tissue distributions and relative concentrations of the postsynaptic 43 kDa protein and the acetylcholine receptor inTorpedo.J. Biol. Cem. 261, 5270–5274.

    CAS  Google Scholar 

  • LaRochelle W. J. and Froehner S. C. (1987) Comparison of the postsynaptic 43kDa protein from muscle cells that differ in acetylcholine receptor clustering activity.J. Biol. Chem. 262, 8190–8195.

    PubMed  CAS  Google Scholar 

  • LaRochelle W. J., Ralston E., Forsayeth J. R., Froehner S. C., and Hall Z. W. (1989) Clusters of 43-kDa protein are absent from genetic variants of C2 muscle cells with reduced acetylcholine receptor expression.Dev. Biol. 132, 130–138

    Article  PubMed  CAS  Google Scholar 

  • LaRochelle W. J., Witzemann V., Fiedler W., and Froehner S. C. (1990) Developmental expression of the 43K and 58K postsynaptic membrane proteins and nicotinic acetylcholine recepors inTorpedo electrocytes.J. Neurosci. 10, 3460–3467.

    PubMed  CAS  Google Scholar 

  • Laufer R. and Changeux J.-P. (1989) Activity-dependent regulation of gene expression in muscle and neuronal cells.Molec. Neurobiol. 3, 1–53.

    Article  CAS  Google Scholar 

  • Lazarides E. and Woods C. (1989) Biogenesis of the red blood cell membrane skeleton and the control of erythroid morphogenesis.Annu. Rev. Cell Biol. 5, 427–452.

    Article  PubMed  CAS  Google Scholar 

  • Lidov H. G. W., Byers T. J., Watkins S. C., and Kunkel L. M. (1990) Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons.Nature 348, 725–727.

    Article  PubMed  CAS  Google Scholar 

  • Lo M. M. S., Garland P. B., Lamprecht J., and Barnard E. (1980) Rotational mobility of the membrane-bound acetylcholine receptor ofTorpedo electric organ measured by phosphorescence depolarization.FEBS Lett. 111, 407–412.

    Article  PubMed  CAS  Google Scholar 

  • Love D. R., Hill D. F., Dickson G., Spurr N. K., Byth B. C., Marsden R. F., Walsh F. S., Edwards Y. H., and Davies K. E. (1989) An autosomal transcript in skeletal muscle with homology to dystrophin.Nature 339, 55–58.

    Article  PubMed  CAS  Google Scholar 

  • McCormack K., Campanelli J. T., Ramaswami M., Mathew M. K., Tanouye M. A., Iversen L. E., and Rudy B. (1989) Leucine-zipper motif update.Nature 340, 103.

    Article  CAS  Google Scholar 

  • McKnight S. L. (1991) Molecular zippers in gene regulation.Sci. Am. 264(4), 54–64.

    Article  PubMed  CAS  Google Scholar 

  • Merlie J. P., Isenberg I. E., Russell S. D., and Sanes J. R. (1984) Denervation supersensitivity in skeletal muscle: Analysis with a cloned cDNA probe.J. Cell Biol. 99, 332–335.

    Article  PubMed  CAS  Google Scholar 

  • Miles K. and Huganir R. L. (1988) Regulation of nicotinic acetylcholine receptors by protein phosphorylation.Molec. Neurobiol. 2, 91–124.

    CAS  Google Scholar 

  • Miles K., Greengard P., and Huganir R. L. (1989) Calcitonin gene-related peptide regulates phosphorylation of the nicotinic acetylcholine receptor in rat myotube.Neuron 2, 1517–1524.

    Article  PubMed  CAS  Google Scholar 

  • Mishina M., Kurosaki, Tobimatsu T., Morimoto Y., Noda M., Yamamoto T., Terao M., Lindstrom J., Takahashi T., Kuno M., and Numa S. (1984) Expression of functional acetylcholine receptor from cloned cDNAs.Nature 307, 604–608.

    Article  PubMed  CAS  Google Scholar 

  • Mitra A. A. K., McCarthy M. P., and Stroud R. M. (1989) Three-dimensional structure of the nicotinic acetylcholine receptor and location of the major associated 43-kD cytoskeletal protein, determined at 22 Å by low dose electron microscopy and X-ray diffraction to 12.5 Å.J. Cell Biol. 109, 755–774.

    Article  PubMed  CAS  Google Scholar 

  • Moody-Corbett F. and Cohen M. W. (1982) Influence of nerve on the formation and survival of acetylcholine receptor and cholinesterase patches on embryonicXenopus muscle cells in culture.J. Neurosci. 2, 633–646.

    PubMed  CAS  Google Scholar 

  • Musil L. S., Carr C., Cohen J. B., and Merlie J. P. (1988) Acetylcholine receptor-associated 43K protein contains covalently bound myristate.J. Cell Biol. 107, 1113–1121.

    Article  PubMed  CAS  Google Scholar 

  • Musil L. S., Frail D. E., and Merlie J. P. (1989) The mammalian 43kD acetylcholine receptor-associated protein (RAPsyn) is expressed in some nonmuscle cells.J. Cell Biol. 108, 1833–1840.

    Article  PubMed  CAS  Google Scholar 

  • Neubig R. R., Krodel E. K., Boyd N. D., and Cohen J. B. (1979) Acetylcholine and local anesthetic binding toTorpedo nicotinic postsynaptic membranes after removal of nonreceptor peptides.Proc. Natl. Acad. Sci. USA 76, 690–694.

    Article  PubMed  CAS  Google Scholar 

  • Nghiêm H.-O., Cartaud J., Dubreuil C., Kordeli C., Buttin G., and Changeux J.-P. (1983) Production and characterization of a monclonal antibody directed against the 43,000 dalton v1 polypeptide fromTorpedo marmorata electric organ.Proc. Natl. Acad. Sci. USA 80, 6403–6407.

    Article  PubMed  Google Scholar 

  • Nghiêm H.-O., Hill J., and Changeux J.-P. (1991) Developmental changes in the subcellular distribution of the 43K (v1) polypeptides inTorpedo marmorata electrocyte: support for a role in acetylcholine receptor stabilization.Development 113, 1059–1067.

    Google Scholar 

  • Nitkin R. M., Smith M. A., Magill C., Fallon J. R., Yao Y.-M. M., Wallace B. G., and McMahan U. J. (1987) Identification of agrin, a synaptic organizing protein fromTorpedo electric organ.J. Cell Biol. 105, 2471–2478.

    Article  PubMed  CAS  Google Scholar 

  • Olek A. J., Krikorian J. G., and Daniels M. P. (1986) Early stages in the formation and stabilization of acetylcholine receptor aggregates on cultured myotubes: sensitivity to temperature and azide.Dev. Biol. 117, 24–34.

    Article  PubMed  CAS  Google Scholar 

  • Olek A. J., Pudimat P. A., and Daniels M. P. (1983) Direct observation of the rapid aggregation of acetylcholine receptors on identified cultured myotubes after exposure to embryonic brain extract.Cell 34, 255–264.

    Article  PubMed  CAS  Google Scholar 

  • Orida N. and Poo M.-M. (1978) Electrophoretic movement and localization of acetylcholine receptors in the embryonic muscle cell membrane.Nature 275, 31–35.

    Article  PubMed  CAS  Google Scholar 

  • Peng H. B., Cheng P.-C., and Luther P. W. (1981) Formation of ACh receptor clusters induced by positively charged latex beads.Nature 292, 831–834.

    Article  PubMed  CAS  Google Scholar 

  • Peng H. B. and Cheng P.-C. (1982) Formation of postsynaptic specializations induced by latex beads in cultured muscle cells.J. Neurosci. 2, 1760–1774.

    PubMed  CAS  Google Scholar 

  • Peng H. B. and Froehner S. C. (1985) Association of the postsynaptic 43K protein with newly formed acetylcholine receptor clusters in cultured muscle cells.J. Cell Biol. 100, 1698–1705.

    Article  PubMed  CAS  Google Scholar 

  • Peng H. B., Lauren L. P., and Chen Q. (1991) Induction of synaptic development in cultured muscle cells by basic fibroblast growth factor.Neuron 6, 237–246.

    Article  PubMed  CAS  Google Scholar 

  • Peng H. B. and Poo M.-M. (1986) Formation and dispersal of acetylcholine receptor clusters in muscle cells.Trends Neurosci. 9, 125–129

    Article  CAS  Google Scholar 

  • Phillips W. D., Kopta C., Blount P., Gardner P. D., Steinbach J. H., and Merlie J. P. (1991) ACh receptor-rich membrane domains organized in fibroblasts by recombinant 43-kilodalton protein.Science 251, 568–570.

    Article  PubMed  CAS  Google Scholar 

  • Porter S. and Froehner S. C. (1985) Interaction of the 43K protein with components ofTorpedo post-synaptic membranes.Biochemistry 24, 425–432.

    Article  PubMed  CAS  Google Scholar 

  • Prives J., Fulton A. B., Penman S., Daniels M. P., and Christian C. N. (1982) Interaction of the cytoskeletal framework with acetylcholine receptors on the surface of embryonic muscle cells in culture.J. Cell Biol. 92, 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Pumplin D. W. and Bloch R. J. (1987) Disruption and reformation of the acetylcholine receptor clusters of cultured rat myotubes occur in two distinct stages.J. Cell Biol. 104, 97–108.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen R., Benvegnu D., O'Shea E. K., Kim P. S., and Alber T. (1991) X-ray scattering indicates that the leucine zipper is a coiled coil.Proc. Natl. Acad. Sci. USA 88, 561–564.

    Article  PubMed  CAS  Google Scholar 

  • Rich M. M. and Lichtman J. W. (1989)In vivo visualization of pre- and postsynaptic changes during synapse elimination in reinnervated mouse muscle.J. Neurosci. 9, 1781–1805.

    PubMed  CAS  Google Scholar 

  • Robitaille R., Adler E. M., and Charlton M. P. (1990) Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses.Neuron 5, 773–779.

    Article  PubMed  CAS  Google Scholar 

  • Ross A., Rapuano M., and Prives J. (1988) Induction of phosphorylation and cell surface redistribution of acetylcholine receptors by phorbol ester and carbamylcholine in cultured chick muscle cells.J. Cell Biol. 107, 1139–1145.

    Article  PubMed  CAS  Google Scholar 

  • Rotzler S. and Brenner H. R. (1990) Metabolic stabilization of acetylcholine receptors in vertebrate neuromuscular junction by muscle activity.J. Cell Biol. 111, 655–661.

    Article  PubMed  CAS  Google Scholar 

  • Rotzler S., Schramek H., and Brenner H. R. (1991) Metabolic stabilization of endplate acetylcholine receptors regulated by Ca2+ influx associated with muscle activity.Nature 349, 337–339.

    Article  PubMed  CAS  Google Scholar 

  • Rousselet A., Cartaud J., Devaux P. F., and Changeux J.-P. (1982) The rotational diffusion of the acetylcholine receptor inTorpedo marmorata membrane fragments studied with a spin-labelled alpha-toxin: importance of the 43,000 protein(s).EMBO J. 1, 439–445.

    PubMed  CAS  Google Scholar 

  • Saitoh T. and Changeux J.-P. (1980) Phosphorylationin vitro of membrane fragments fromTorpedo marmorata electric organ: effect on membrane solubilization by detergents.Eur. J. Biochem. 105, 51–62.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh T., Wennogle L. P., and Changeux J.-P. (1979) Factors regulating the susceptibility of the acetylcholine receptor protein to heat inactivation.FEBS Lett. 18, 489–494.

    Article  Google Scholar 

  • Schmitt B., Knaus P., Becker C.-M., and Betz H. (1987) The Mr 93,000 polypeptide of the postsynaptic glycine receptor complex is a peripheral membrane protein.Biochemstry 26, 805–811.

    Article  CAS  Google Scholar 

  • Schuetze S. M. and Role L. W. (1987) Developmental regulation of nicotinic acetylcholine receptors.Annu. Rev. Neurosci. 10, 403–457.

    Article  PubMed  CAS  Google Scholar 

  • Sealock R., Wray B. E., and Froehner S. C. (1984) Ultrastructural localization of the Mr 43,000 protein and the acetylcholine receptor inTorpedo postsynaptic membranes using monoclonal antibodies.J. Cell Biol. 98, 2239–2244.

    Article  PubMed  CAS  Google Scholar 

  • Seitanidou T., Triller A., and Korn H. (1988) Distribution of glycine receptors on the membrane of a central neuron: an immunoelectron microscopy study.J. Neurosci. 8(11), 4319–4333.

    PubMed  CAS  Google Scholar 

  • Shyng S.-L., Xu R., and Salpeter M. M. (1991) Cyclic AMP stablizes the degradation of original junctional acetylcholine receptors in denervated muscle.Neuron 6, 469–475.

    Article  PubMed  CAS  Google Scholar 

  • Sobel A., Weber M., and Changeux J.-P. (1977) Large scale purificaion of the acetylcholine receptor protein in its membrane-bound and detergent-extracted forms fromTorpedo marmorata electric organ.Eur. J. Biochem. 80, 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan Y., Elmer L., Davis J., Bennett V., and Angelides K. (1988) Ankyrin and spectrin associate with voltage-dependent sodium channels in brain.Nature 333, 177–180.

    Article  PubMed  CAS  Google Scholar 

  • St. John P. A., Froehner S. C., Goodenough D. A., and Cohen J. B. (1982) Nicotinic postsynaptic membranes fromTorpedo: sidedness, permeability to macro-molecules, and topography of major polypeptides.J. Cell Biol. 92, 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Staufenbiel M. and Lazarides E. (1986) Ankyrin is fatty acid acylated in erythrocytes.Proc. Natl. Acad. Sci. USA 83, 318–322.

    Article  PubMed  CAS  Google Scholar 

  • Steinbach J. H. (1981) Developmental changes in acetylcholine receptor aggregates at rat skeletal neuromuscular junctions.Dev. Biol. 84, 267–276.

    Article  CAS  Google Scholar 

  • Toyoshima C. and Unwin N. (1988) Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes.Nature 336, 247–250.

    Article  PubMed  CAS  Google Scholar 

  • Triller A., Cluzeaud F., Pfeiffer F., Betz H., and Korn H. (1985) Distribution of glycine receptors at central synapses: an immunoelectron microscopy study.J. Cell Biol. 101, 683–688.

    Article  PubMed  CAS  Google Scholar 

  • Triller A., Seitanidou T., Franksson O., and Korn H. (1990) Size and shape of glycine receptor clusters in a central neuron exhibit a somato-dendritic gradient.New Biologist 2(7), 637–641.

    PubMed  CAS  Google Scholar 

  • Tsui H.-C. T., Cohen J. B., and Fischbach G. D. (1990) Variation in the ratio of acetylcholine receptors and the Mr 43,000 receptor-associated protein in embryonic chick myotubes and myoblasts.Dev. Biol. 140, 437–446.

    Article  PubMed  CAS  Google Scholar 

  • Walker J. H., Boustead C. M., and Witzemann V. (1984) The 43K protein, v1, associated with acetylcholine receptor containing membrane fragments is an actin-binding protein.EMBO J. 3, 2287–2290.

    PubMed  CAS  Google Scholar 

  • Wallace B. G., Qu Z., and Huganir R. L. (1991) Agrin induces phosphorylation of the nicotinic acetylcholine receptor.Neuron 6, 869–878.

    Article  PubMed  CAS  Google Scholar 

  • Wennogle L. P. and Changeux J.-P. (1980) Transmembrane orientation of proteins present in acetylcholine receptor-rich membranes fromTorpedo marmorata studied by selective proteolysis.Eur. J. Biochem. 106, 381–393.

    Article  PubMed  CAS  Google Scholar 

  • Witzemann V., Richardson G., and Boustead C. (1983) Characterization and distribution of acetylcholine receptors and acetylcholinesterase during electric organ development inTorpedo marmorata.Neuroscience 8, 333–349.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, J.A. Nicotinic receptor-associated 43K protein and progressive stabilization of the postsynaptic membrane. Mol Neurobiol 6, 1–17 (1992). https://doi.org/10.1007/BF02935564

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935564

Index Entries

Navigation