Advertisement

Journal of Genetics

, Volume 85, Issue 3, pp 165–170 | Cite as

Microsatellite DNA typing for assessment of genetic variability in Tharparkar breed of Indian zebu (Bos indicus) cattle, a major breed of Rajasthan

  • M. Sodhi
  • M. Mukesh
  • B. Prakash
  • S. P. S. Ahlawat
  • R. C. SobtiEmail author
Research article

Abstract

The present study estimates genetic variability with a set of 25 microsatellite markers in a random sample of 50 animals of Tharparkar breed of Indian zebu (Bos indicus) cattle. Tharparkar is a dual-purpose breed, valued for its milk as well as draught utility, and is adapted to the inhospitable Thar desert conditions of Rajasthan typified by summer temperature hovering above 50°C, sparse rainfall and vegetation, and scarcity of even drinking water. The observed number of alleles ranged from 4 (ETH3, ILSTS030, INRA5, INRA63 and MM8) to 11 (HEL9 and ILSTS034), with allelic diversity (average number of observed alleles per locus) of 6.20. Observed and expected heterozygosity ranged from 0.25 (INRA63) to 0.77 (ETH10), and from 0.51 (HEL5 and HAUT27) to 0.88 (HEL9) respectively. Wide range of genetic variability supported the utility of these microsatellite loci in measurement of genetic diversity indices in other Indian cattle breeds too. Various average genetic variability measures, namely allele diversity (6.20), observed heterozygosity (0.57), expected heterozygosity (0.67) and mean polymorphism information content (0.60) values showed substantial within-breed genetic variability in this major breed of Rajasthan, despite accumulated inbreeding as reflected by high average inbreeding coefficient (F 1S = 0.39). The Tharparkar population has not experienced a bottleneck in the recent past.

Keywords

genetic bottleneck microsatellite markers genetic diversity Tharparkar cattle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya R. M. and Bhat P. N. 1984Livestock and poultry genetic resources of India. Indian Veterinary Research Institute, Izatnagar.Google Scholar
  2. Bassam J. B., Caetano-Anolles G. and Gresshoff P. M. 1991 Fast and sensitive silver staining of DNA in polyacrylamide gels.Anal. Biochem. 196, 82–83.CrossRefGoogle Scholar
  3. Beja-Pereira A., Alexandrino P., Bessa I., Carretero Y., Dunner S., Ferrand N.et al. 2003 Genetic characterization of Southwestern European bovine breeds: a historical and biogeographical reassessment with a set of 16 microsatellites.J. Hered. 94, 243- 250.PubMedCrossRefGoogle Scholar
  4. Botstein D., White R. L., Skolnick M. and Davis R. W. 1980 Construction of a genetic linkage map in man using restriction fragment length polymorphisms.Am. J. Hum. Genet. 32, 314–331.PubMedGoogle Scholar
  5. Bradley D. G., Machugh D. G., Loftus R. T., Sow R. S., Hoste C. H. and Cunningham E. P. 1994 Zebu-taurine variation in Y chromosome DNA: a sensitive assay for introgression in West African trypnotolerant cattle populations.Anim. Genet. 25, 7–12.PubMedGoogle Scholar
  6. Bruford M. W., Bradley D. G. and Luikart G. 2003 DNA markers reveal the complexity of livestock domestication.Nat. Rev. Genet. 4, 900–910.PubMedCrossRefGoogle Scholar
  7. Cornuet J. M. and Luikart G. 1996 Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data.Genetics 144, 2001–2014.PubMedGoogle Scholar
  8. Dorji T., Hannote O., Arbenz M., Rege J. E. O. and Roder W 2003 Genetic diversity in indigenous cattle populations in Bhutan: implications for conservation.Asian-Aust. J. Anim. Sci. 16, 946- 951.Google Scholar
  9. FAO 1996Global projects for the maintenance of domestic animal genetic diversity (MoDAD). Food and Agriculture Organization, Rome (http://www.fao.org/dad-is/).Google Scholar
  10. FAO 1998Secondary guidelines for development of national farm animal genetic resources management plans: measurement of domestic animal diversity (MoDAD). Original working group report. Food and Agriculture Organization, Rome (http://dad.fao.org/en/refer/library/guideline/workgrp.pdf).Google Scholar
  11. FAO 2000World watch list for domestic animal diversity, 3rd edition. Food and Agriculture Organization, Rome.Google Scholar
  12. Garza C. and Williamson E. G. 2001 Detection of reduction in population size using data from microsatellite loci.Mol. Ecol. 10, 305–318.PubMedCrossRefGoogle Scholar
  13. Goudet J. 2002 FSTAT computer package for PCs. Institute of Ecology, UNIL, Lausanne, Switzerland.Google Scholar
  14. Guo S. W and Thompson E. A. 1992 Performing the exact test for Hardy-Weinberg proportions for multiple alleles.Biometrics 48, 361–372.PubMedCrossRefGoogle Scholar
  15. Jordana J., Alexandrino P., Beija-Pereira A., Bessa I., Canon J., Carretero Y.et al. 2003 Genetic structure of eighteen local south European beef cattle breeds by F-statistics.J. Anim. Genet. 120, 73–87.CrossRefGoogle Scholar
  16. Kantanen J., Olsaker I., Holm L. E., Lien S., Vikki J., Brusgard K.et al. 2000 Genetic diversity and population structure of 20 North European cattle breeds.J. Hered. 91, 446–457.PubMedCrossRefGoogle Scholar
  17. Kumar P., Freeman A. R., Loftus R. T., Gallard C., Fuller D. Q. and Bradley D. G. 2003 Admixture analysis of South Asian cattle.Heredity 91, 43–50.PubMedCrossRefGoogle Scholar
  18. Loftus R. T., MacHugh D. E., Bradley D. G., Sharp P. M. and Cunningham P. 1994 Evidence for two independent domestications of cattle.Proc. Natl. Acad. Sci. USA 91, 2757–2761.PubMedCrossRefGoogle Scholar
  19. Loftus R., Ertrugul O., Harba A., El-Barodys M., MacHugh D., Park S. and Bradley D. 1999 A microsatellite survey of cattle from a centre of origin: the Near East.Mol. Ecol. 8, 2015–2022.PubMedCrossRefGoogle Scholar
  20. Luikart G. and Cornuet J. M. 1997 Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data.Conserv. Biol. 12, 228–237.CrossRefGoogle Scholar
  21. Metta M., Kanginakudru S., Gudiseva N. and Nagaraju J. 2004 Genetic characterization of the Indian cattle breeds, Ongole and Deoni (Bos indicus), using microsatellite markers-a preliminary study.BMC Genetics 5, 16.PubMedCrossRefGoogle Scholar
  22. Mukesh M., Sodhi M., Bhatia S. and Mishra B. P. 2004 Genetic diversity of Indian native cattle breeds as analysed with 20 microsatellites.J. Anim. Breed. Genet. 121, 416–424.CrossRefGoogle Scholar
  23. Nivsarkar A. E., Vij P. K. and Tantia M. S. 1992Characterization and description of Tharparkar breed. National Bureau of Animal Genetic Resources, Karnal, India.Google Scholar
  24. Raymond M. and Rousset F. 1995 An exact test for population differentiation.Evolution 49, 1280–1283.CrossRefGoogle Scholar
  25. Sunnucks P. 2000 Efficient genetic markers from population biology.Trends Ecol. Evol. 15, 199–203.PubMedCrossRefGoogle Scholar
  26. Tambasco D. D., Alencar M. M., Coutinho L. L., Tambasco J. J., Tambasco M. D. and Regitano L. C. A. 2000 Caracterizacao molecular de animals da raca Nellore utilizando microssatelites e genes candidates.Rev. Bras. Zootech. 29, 1044–1049.Google Scholar
  27. Yeh F., Boyle C., Rongcai T., Yez Y. and Xian J. M. 1999 POP- GENE, Version 1.31. A Microsoft Windows based freeware for population genetic analysis. University of Alberta, Edmonton, Canada.Google Scholar

Copyright information

© Indian Academy of Sciences 2006

Authors and Affiliations

  • M. Sodhi
    • 1
  • M. Mukesh
    • 1
  • B. Prakash
    • 1
  • S. P. S. Ahlawat
    • 1
  • R. C. Sobti
    • 2
    Email author
  1. 1.National Bureau of Animal Genetic ResourcesKarnalIndia
  2. 2.Department of BiotechnologyPanjab UniversityChandigarhIndia

Personalised recommendations