Medical Oncology and Tumor Pharmacotherapy

, Volume 4, Issue 3–4, pp 151–161 | Cite as

Cancer and leukemia risks after low level radiation— Controversy, facts and future

  • Baruch Modan
Radiation Risks


Quantification of delayed low dose radiation (LDR) effects is still controversial. The current concept of the shape of the dose-response curve, particularly at the very low levels, is derived primarily by extrapolation from high doses and is affected by economic, social and political implications of cancer yield. Evidence based on epidemiological studies of populations exposed to fallout, occupational, intrauterine or background LDR is limited, due to methodological drawbacks and the need for extremely large sample sizes. Nevertheless, recent data indicate that LDR-induced childhood leukemia and thyroid cancer may exceed the rates predicted on the basis of the linear quadratic curve. The high yieldin utero and in early childhood could be associated with low cumulative load of background radiation, and a consequently more effective radiation increment.

A long term follow up of children exposed to 90 mSv after scalp X-irradiation revealed a relative risk of 3.8 and an excess risk of about 1.08 per 1000 man-sievert per year for thyroid cancer. Application of these findings to the post-Chernobyl state of events suggests that an increment of up to 20% in thyroid cancer might occur in a population exposed to 5 mSv as an aftermath of a similar accident.

Prediction of future risk estimates should therefore be made with alertness and an open mind.


Leukemia Thyroid Cancer Childhood Cancer Tinea Capitis Healthy Work Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beebe G W: The atomic bomb survivors and the problem of low-dose radiation effects.Am J Epidemiol 114, 761 (1981).PubMedGoogle Scholar
  2. 2.
    Darby S C: Epidemiological evaluation of radiation risk using populations exposed at high doses.Hlth Phy 51, 269 (1986).Google Scholar
  3. 3.
    Edwards F M: Dose-response models and methods of risk prediction and causation estimation.Semins nucl Med 16, 118 (1986).CrossRefGoogle Scholar
  4. 4.
    Rossi H H: The estimation of low-dose hazards by extrapolation from high doses.Yale J Biol Med 54, 339 (1981).PubMedGoogle Scholar
  5. 5.
    Bross I D J, Driscoll D L: Direct estimates of low-level radiation risks of lung cancer at two NRC-compliant nuclear installations: why are the new risk estimates 20 to 200 times the old official estimates.Yale J Biol Med 54, 317 (1981).PubMedGoogle Scholar
  6. 6.
    Ritenour E R: Health effects of low level radiation: carcinogenesis, teratogenesis and mutagenesis.Semins nucl Med 16, 106 (1986).CrossRefGoogle Scholar
  7. 7.
    Cohen B L: Limitations and problems in deriving risk estimates for low-level radiation exposure.Yale J Biol Med 54, 329 (1981).PubMedGoogle Scholar
  8. 8.
    Kato H, Schull W J: Studies of the mortality of A-bomb survivors. 7. mortality, 1950–1978: Part I. Cancer mortality.Radiat Res 90, 395 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    Jablon S, Tachikawa K, Belsky J L, Steer A: Cancer in Japanese exposed as children to atomic bombs.Lancet i, 927 (1971).CrossRefGoogle Scholar
  10. 10.
    Smith P G, Doll R: Mortality from cancer and all causes among British radiologists.Br J Radiol 54, 187 (1981).PubMedGoogle Scholar
  11. 11.
    Darby S C, Nakashima E, Kato H: A parallel analysis of cancer mortality among atomic bomb survivors and patients with ankylosing spondylitis given X-ray therapy.J natn Cancer Inst 75, 1 (1985).Google Scholar
  12. 12.
    Shore R E, Woodward E D, Hempelman L H: Radiation-induced thyroid cancer, in: Boice J D, Jr Fraumeni J F, Jr (eds):Radiation Carcinogenesis: Epidemiology and Biological Significance, vol.26, pp. 131–137. New York, Raven Press (1984).Google Scholar
  13. 13.
    Jablon S: Epidemiologic perspectives in, radiation carcinogenesis, in Boice J D, Jr, Fraumeni J F, Jr (eds):Radiation Carcinogenesis; Epidemiology and Biological Significance vol.26, pp. 1–18. New York, Raven Press (1984).Google Scholar
  14. 14.
    Rotblat J: The puzzle of absent effects.New Scient 75, 475 (1977).Google Scholar
  15. 15.
    Loewe W E, Mendelsohn E: Revised dose estimates at new Hiroshima and Nagasaki dose estimates: cancer risks and neutron R B E.Hlth Phys 41, 663 (1981).Google Scholar
  16. 16.
    Straume T, Dobson R L: Implications of new Hiroshima and Nagasaki dose estimates: cancer risks and neutron RBE.Hlth Phys 41, 666 (1981).Google Scholar
  17. 17.
    Kato H, Brown C C, Hoel D G, Schull W J: Studies of the mortality of A-bomb survivors. Report 7. Mortality, 1950–1978: Part II. Mortality from causes other than cancer and mortality in early entrants.Radiat Res 91, 243 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    Stutzman C D, Nelson D M, Lanier A P: Estimates of cancer incidence in Alaskan natives due to exposure to global radioactive fallout from atmospheric nuclear weapons testing.Alaska Med 27, 53 (1985).PubMedGoogle Scholar
  19. 19.
    Rallison M L, Dobyns B M, Keating F R, Jr, Rall J E, Tyler F H: Thyroid disease in children.Am J Med 56, 457 (1974).PubMedCrossRefGoogle Scholar
  20. 20.
    Rallison M L, Dobyns B M, Keating F R, Jr, Rall J E, Tyler F H: Thyroid nodularity in children.J Am med Ass 233, 1069 (1975).CrossRefGoogle Scholar
  21. 21.
    Conard R A: Late radiation effects in Marshall Islanders exposed to fallout 28 years ago, in Boice J D, Jr, Fraumeni J F, Jr (eds):Radiation Carcinogenesis: Epidemiology and Biological Significance, vol. 26, pp. 57–71. New York, Raven Press (1984).Google Scholar
  22. 22.
    Lyon T L, Klauber M R, Gardner J W, Udall K S: Childhood leukemias associated with fallout from nuclear testing.New Engl J Med 300, 397 (1979).PubMedGoogle Scholar
  23. 23.
    Beck H L, Krey P W: Radiation exposure in Utah from Nevada nuclear tests.Science 220, 18 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    Land C E, McKay F W, Machado S G: Childhood leukemia and fallout from the Nevada nuclear tests.Science 223, 139 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    Johnson C J: Cancer incidence in an area of radioactive fallout downwind from the Nevada test site.J Am med Ass 251, 230 (1984).CrossRefGoogle Scholar
  26. 26.
    Johnson C J: A cohort study of cancer incidence in Mormon families exposed to nuclear fallout versus an area-based study of cancer deaths in whites in south-western Utah.Am J Epidemiol 125, 166 (1987).PubMedGoogle Scholar
  27. 27.
    Machado S G, Land C E, McKay F W: Cancer mortality and radioactive fallout in southwestern Utah.Am J Epidemiol 125, 44 (1987).PubMedGoogle Scholar
  28. 28.
    Caldwell C G, Kelley D, Zack M, Falk H, Heath C W, Jr: Leukemia among participants in military maneuvers at a nuclear bomb test: a preliminary report.J Am med Ass 244, 1575 (1980).CrossRefGoogle Scholar
  29. 29.
    Caldwell G G, Kelley D, Zack M, Falk H, Heath C W, Jr.: Mortality and cancer frequency among military nuclear test (Smoky) participants, 1951 through 1979.J Am med Ass 250, 620 (1983).CrossRefGoogle Scholar
  30. 30.
    Robinette C D, Jablon S: Studies of participants at tests of nuclear weapons: I. The Plumbob series, In Broerse J J, Barendsen G W, Kal H B, van der Kogel A J (eds).Somatic and Genetic Effects. Proceedings of the Seventh International Congress of Radiation Research. Amsterdam. Martinus Nijhoff C8–13 (1983).Google Scholar
  31. 31.
    Knox E G, Sorahan T, Stewart A: Cancer following nuclear weapons tests.Lancet i, 815 (1983).CrossRefGoogle Scholar
  32. 32.
    Knox E G, Sorahan T, Stewart A M: Cancer following nuclear weapons tests.Lancet ii, 856 (1983).CrossRefGoogle Scholar
  33. 33.
    Gardner M J, Winter P D: Mortality in Cumberland during 1959–78 with reference to cancer in young people around Windscale.Lancet i, 216 (1984).CrossRefGoogle Scholar
  34. 34.
    Gillis C R, Hole D J: Childhood leukemia in coastal areas of West Scotland 1969–83.Lancet ii, 872 (1984).CrossRefGoogle Scholar
  35. 35.
    Barrow J A: Cancer mortality in small areas around facilities in England and Wales.Br J Cancer 50, 815 (1980).Google Scholar
  36. 36.
    Anon. The main lesson from Sellafield.Lancet ii, 2 (1984).Google Scholar
  37. 37.
    Black D: New evidence on childhood leukaemia and nuclear establishments.Br Med J 294, 591 (1987).Google Scholar
  38. 38.
    Urquhart J, Cutler J, Burke M: Leukaemia and lymphatic cancer in young people near nuclear installations.Lancet i, 384 (1986).CrossRefGoogle Scholar
  39. 39.
    Barton C J, Roman E, Ryder H M, Watson A: Childhood leukaemia in West Berkshire.Lancet ii, 1248 (1985).CrossRefGoogle Scholar
  40. 40.
    Roman E, Beral V, Carpenter L, Watson A, Barton C, Ryder H, Lynn-Aston D: Childhood leukaemia in the West Berkshire and Basingstoke and North Hampshire District Health Authorities in relation to nuclear establishments in the vicinity.Br Med J 294, 597 (1987).Google Scholar
  41. 41.
    Black D: New evidence on childhood leukaemia and nuclear establishments.Br Med J 294, 591 (1987).Google Scholar
  42. 42.
    Darby S C, Doll R: Fallout, radiation doses near Dounreay, and childhood leukaemia.Br Med J 294, 603 (1987).Google Scholar
  43. 43.
    Mancuso T F, Stewart A, Kneale G: Radiation exposures of Hanford workers dying from cancer and other causes.Hlth Phys 33, 369 (1977).Google Scholar
  44. 44.
    Hutchinson G B, MacMahon B: Review of report by Mancuso, Stewart and Kneale of radiation exposure of Hanford workers.Hlth Phys 37, 207 (1979).Google Scholar
  45. 45.
    Gilbert E S, Marks S: An analysis of the mortality of workers in a nuclear facility.Radiat Res 79, 122 (1979).PubMedCrossRefGoogle Scholar
  46. 46.
    Tolley H D, Marks S, Buchanan J A, Gilbert E S: A further update of the analysis of mortality of workers in a nuclear facility.Radiat Res 95, 211 (1983).PubMedCrossRefGoogle Scholar
  47. 47.
    Najarian T, Colton T: Mortality from leukemia and cancer in shipyard workers.Lancet i, 1018 (1978).CrossRefGoogle Scholar
  48. 48.
    Rinsky R A, Zumwalde R D, Waxweiler R J, Murray W E, Bierraum P J, Landrigan P J, Terpilak M, Cox C: Cancer mortality at a naval nuclear shipyard.Lancet i, 231 (1981).CrossRefGoogle Scholar
  49. 49.
    Stern F B, Waxweiler R A, Beaumont J J, Lee S T, Rinsky R A, Zumwalde R D, Halperin W E, Bierbaum P J, Landrigan P J, Murray W E: A case-control study of leukemia at a naval nuclear shipyard.Am J Epidemiol 123, 980 (1986).PubMedGoogle Scholar
  50. 50.
    Voelz G L, Wilkinson G S, Acquavella J F, Tietjen G L, Brackbill R N, Reyes M, Wiggs L D: An update of epidemiologic studies of plutonium workers.Hlth Phys 44, 493 (1983).Google Scholar
  51. 51.
    Voelz G L, Grier R S, Hempelmann L H: A 37-year medical follow-up of Manhattan Project Pu workers.Hlth Phys 48, 249 (1985).Google Scholar
  52. 52.
    Reynolds P, Austin D F: Cancer incidence among employees of the Lawrence Livermore National Laboratory, 1969–1980.West J Med 142, 214 (1985).PubMedGoogle Scholar
  53. 53.
    Acquavella J F, Walkinson G S, Tietjen G L, Key C R, Stebbings J H, Voelz G L: A melanoma case-control study at the Los Alamos National Laboratory.Hlth Phys 15, 581 (1983).Google Scholar
  54. 54.
    Beral V, Inskip H, Fraser P, Booth M, Coleman D, Rose G: Mortality of employees of the United Kingdom Atomic Energy Authority, 1946–1979.Br Med J 291, 440 (1985).Google Scholar
  55. 55.
    Stewart A, Webb J, Hewitt D: A survey of childhood malignancies.Br Med J 1, 1495 (1958).PubMedGoogle Scholar
  56. 56.
    Gibson R, Graham S, Lilienfeld A M, Schuman L, Dowd J E, Levin M L: Irradiation in the epidemiology of leukemia among adults.J natn Cancer Inst 48, 301 (1972).Google Scholar
  57. 57.
    Gibson R, Bross I D J, Graham S, Lilienfeld A M, Schuman L M, Levin M L, Dowd J E: Leukemia in children exposed to multiple risk factors.New Engl J Med 279, 906 (1968).PubMedGoogle Scholar
  58. 58.
    Bross I D, Natarajan N: Leukemia from low-level radiation: Identification of susceptible children.New Engl J Med 287, 107 (1972).PubMedGoogle Scholar
  59. 59.
    Shiono P H, Chung C S, Myrianthopoulos N C: Preconception radiation, intrauterine diagnostic radiation and childhood neoplasia.J natn Cancer Inst 65, 681 (1980).Google Scholar
  60. 60.
    MacMahon B: Prenatal X-ray exposure and childhood cancer.J natn Cancer Inst 28, 1173 (1962).Google Scholar
  61. 61.
    Monson R R, MacMahon B: Prenatal X-ray exposure and cancer in children, in Boice J D, Jr, Fraumeni J F, Jr (eds):Radiation Carcinogenesis: Epidemiology and Biological Significance, vol. 26, pp. 97–106 (1984).Google Scholar
  62. 62.
    Diamond E L, Schmerler H, Lilienfeld A M: The relationship of intrauterine radiation to subsequent mortality and development of leukemia in children.Am J Epidemiol 97, 283 (1973).PubMedGoogle Scholar
  63. 63.
    Court Brown W M, Doll R, Bradford Hill A: Incidence of leukaemia after exposure to diagnostic radiationin utero.Br Med J 26, 1539 (1960).Google Scholar
  64. 64.
    Oppenheim B E, Griem M K, Meier P: The effects of low-dose prenatal irradiation in humans: analysis of Chicago lying-in data and comparison with other studies.Radiat Res 57, 508 (1974).PubMedCrossRefGoogle Scholar
  65. 65.
    Hopton P A, McKinney P A, Cartwright R A, Mann J R, Birch J M, Hartley A L, Waterhouse J A H, Johnston H E, Draper G J, Stiller C A: X-rays in pregnancy and the risk of childhood cancer.Lancet ii, 773 (1985).CrossRefGoogle Scholar
  66. 66.
    Harvey E B, Boice J D, Jr, Honeyman M, Flannery S T: Prenatal X-ray exposure and childhood cancer in twins.New Engl J Med 312, 541 (1985).PubMedGoogle Scholar
  67. 67.
    Totter J R, MacPherson H G: Do childhood cancers result from prenatal X-rays?Hlth Phys 40, 511 (1981).CrossRefGoogle Scholar
  68. 68.
    Burch P R J: Radiation hazards.Br J Radiol 54, 697 (1981).PubMedGoogle Scholar
  69. 69.
    Mole R H: Antenatal irradiation and childhood cancer: causation or coincidence.Br J Cancer 30, 199 (1974).PubMedGoogle Scholar
  70. 70.
    Jablon S, Kato H: Childhood cancer in relation to prenatal exposure to atomic-bomb radiation.Lancet ii, 1000 (1970).CrossRefGoogle Scholar
  71. 71.
    Ishimaru T, Ichimaru M, Mikami M: Leukaemia incidence among individuals exposedin utero, children of atomic bomb survivors, and their controls: Hiroshima and Nagasaki, 1945–79. RERF TR/11–81 (1981).Google Scholar
  72. 72.
    Stewart A: Detection of late effects of ionizing radiation: why deaths of A-bomb survivors are so misleading.Int J Epidemiol 14, 52 (1985).PubMedCrossRefGoogle Scholar
  73. 73.
    Kneale G W, Stewart A M: Prenatal X-rays and cancers: further tests of data from the Oxford Survey of childhood cancers.Hlth Phys 51, 369 (1986).Google Scholar
  74. 74.
    Bross I D J, Ball M, Falen S: A dosage response curve for the one rad range adult risks from diagnostic radiation.Am J publ Hlth 69, 130 (1979).CrossRefGoogle Scholar
  75. 75.
    Boice J D, Jr, Land C E: Adult leukemia following diagnostic X-rays. A review of the report by Bross, Ball and Fallen on the Tri-state leukemia survey.Am J Publ Hlth 69, 137 (1979).Google Scholar
  76. 76.
    Jablon S, Miller R W: Army technologists: 29 year follow-up for cause of death.Radiology 126, 677 (1978).PubMedGoogle Scholar
  77. 77.
    Matanoski G M, Seltser R, Sartwell P E, Diamond E L, Elliot E A: The current mortality rates of radiologists and other physician specialists: deaths from all causes and from cancer.Am J Epidemiol 101, 188 (1975).PubMedGoogle Scholar
  78. 78.
    Matanoski G M, Seltser R, Sartwell P E, Diamond E L, Elliot E A: The current mortality rates of radiologists and other physician specialists: specific cause of death.Am J Epidemiol 101, 199 (1975).PubMedGoogle Scholar
  79. 79.
    Luxin W: Health survey in high background radiation areas in China.Science 209, 877 (1980).CrossRefGoogle Scholar
  80. 80.
    Kochupillai M, Verma IC, Grewal M S, Ramalingaswami Z: Down's syndrome and related abnormalities in an area of high background radiation in coastal Kerala.Nature 262, 60 (1976).PubMedCrossRefGoogle Scholar
  81. 81.
    Zufan T, Luxin W: An epidemiological investigation of mutational diseases in the high background radiation area of Yangiiang, China.J Radiat Res 27, 141 (1986).CrossRefGoogle Scholar
  82. 82.
    Friere-Maia A, Friere-Maia D V: Mortality rates in a Brazilian area of high background radiation. Preliminary analysis based on official records.Nucl Sci 22, 38453 (1968).Google Scholar
  83. 83.
    Radford E P, St. Clair Renard K G: Lung cancer in Swedish iron miners exposed to low doses of radon daughters.New Engl J Med 310, 1485 (1984).PubMedGoogle Scholar
  84. 84.
    Howe G R, Nair R C, Newcombe H B, Miller A B, Abbatt J D: Lung cancer mortality (1950–80) in relation to radon daughter exposure in a cohort of workers at the Eldorado Beaverlodge Uranium Mine.J natn Cancer Inst 77, 357 (1986).Google Scholar
  85. 85.
    Fleischer R L: A possible association between lung cancer and a geological outcrop.Hlth Phys 50, 823 (1986).Google Scholar
  86. 86.
    Flodin U, Fredriksson M, Axelson O, Persson B, Hardell L: Background radiation, electrical work, and some other exposures associated with acute myeloid leukemia in a case-referent study.Archs envir Hlth 41, 77, (1986).Google Scholar
  87. 87.
    Talbott E, Kuller L, Murphy P, Radford E, Traven N: Problems in determining health effects of a community exposed to toxic wastes, in Andelman J D, Underhill D W (eds):Health Effects from Hazardous Wastes, pp. 241–262. Chelsea, Lewis (1987).Google Scholar
  88. 88.
    Werner A, Modan B, Davidoff D: Doses to the brain, skull and thyroid following X-ray therapy for tinea capitis.Phys med Biol 13, 247 (1968).PubMedCrossRefGoogle Scholar
  89. 89.
    Modan B, Baidatz D, Mart H, Steinitz R, Levin S G: Radiation-induced head and neck tumors.Lancet i, 277 (1974).CrossRefGoogle Scholar
  90. 90.
    Ron E, Modan B: Benign and malignant thyroid neoplasms in children irradiated for fungal scalp infection. (Tinea capitis).J natn Cancer Inst 65, 7 (1980).Google Scholar
  91. 91.
    Modan B, Ron E, Alfandary E, Boice J D, Jr, Katz L: Mortality and morbidity following scalp irradiation in childhood—low dose effects.Proceedings, 14th International Cancer Congress, Budapest, Hungary, August 1986.Google Scholar
  92. 92.
    Albert R E, Omran A R: Follow-up study of patients treated by X-ray epilation for tinea capitis.Archs envir Hlth 17, 899 (1968).Google Scholar
  93. 93.
    Harley N H, Albert R E, Shore R E, Pasternak B S: Follow-up study of patients treated by X-ray epilation for tinea capitis: estimation of the dose to the thyroid and pituitary glands and other structures of the head and neck.Phys med Biol 21, 631 (1976).PubMedCrossRefGoogle Scholar
  94. 94.
    Shore R E, Albert R E, Pasternack B S: Follow-up study of patients treated by X-ray epilation for tinea capitis: resurvey of post-treatment illness and mortality experience.Archs envir Hlth 31, 17 (1976).Google Scholar
  95. 95.
    Shore R E, Albert R E, Reed M, Harley N, Pasternack B S: Skin cancer incidence among children irradiated for ringworm of the scalp.Radiat Res 100, 192 (1984).PubMedCrossRefGoogle Scholar
  96. 96.
    Schulz R F, Albert R E III: Dose to organs of the head from the X-ray treatment of tinea capitis.Archs envir Hlth 17, 935 (1968).Google Scholar
  97. 97.
    Youmans H E, Wai Lee: Doses to the central nervous system of children resulting from X-ray therapy for tinea capitis. U.S. Department of Health, Education and Welfare. Bureau of Radiological Health, October 1970.Google Scholar
  98. 98.
    Ron E, Modan B, Boice J D, Jr: Mortality from cancer and other causes following radiotherapy for ringworm of the scalp.Am J Epidemiol. (In press.)Google Scholar
  99. 99.
    Marshall E: Recalculating the cost of Chernobyl.Science 236, 658 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Pergamon Press Ltd. 1987

Authors and Affiliations

  • Baruch Modan
    • 1
    • 2
  1. 1.Department of Clinical EpidemiologyChaim Sheba Medical CenterTel HashomerIsrael
  2. 2.Tel Aviv University Medical SchoolIsrael

Personalised recommendations