Skip to main content

Advertisement

Log in

Wild-typep53 gene-induced morphological changes and growth suppression in hepatoma cells

  • Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

The human hepatocellular carcinoma (HCC) cell line, HLF, expresses only mutant-type p53 (mt-p53), which has an amino acid substitution at the 244th residue from glycine to alanine. HLF cells were transfected with wild-type p53 (wt-p53) cDNA construct pC53-SN3, mt-p53 cDNA construct pC53-SCX [which differs by a single nucleotide, resulting in alanine instead of valine at the 143rd residue in p53 (p53-143)], or pCMV-Neo-Bam, as a control, by a liposome method. After G418 selection, three wt-p53 stable transformants (WT), four mt-p53 transformants (MT), and three control vector transformants (VT) were obtained. We analyzed the cell growth and morphological changes of these transformants under different culture conditions [fetal calf serum (FCS), 10%, 1%, and 0%]. Whereas no difference from control in the growth rate and morphology was observed under the 10% FCS conditions, serum starvation induced remarkable phenotypical changes in all three WTs, but not in the other transformant. Corresponding to these phenotypical changes, the transcriptional activity of wt-p53 was increased more than nine fold. These results indicated that serum starvation would induce wt-p53 biological function, which is tightly linked to morphological changes and growth suppression. To induce these changes, the introduction of thewt-p53 gene itself was not sufficient, and additional triggering, i.e., serum starvation, was indispensable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hollstein M, Sidransky D, Vogelstein B, et al. p53 mutation in human cancers. Science 1991;253:49–53.

    Article  PubMed  CAS  Google Scholar 

  2. Nigro JM, Baker SJ, Preisinger AC, et al. Mutations in thep53 gene occur in diverse human tumour types. Nature 1989;342:705–708.

    Article  PubMed  CAS  Google Scholar 

  3. Baker SJ, Preisinger AC, Jessup JM, et al.p53 gene mutations occur in combination with 17p allelic deletion as late events in colorectal tumorigenesis. Cancer Res 1989;50:7717–7722.

    Google Scholar 

  4. Mietz JA, Unger T, Huibregtse JM, et al. The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. EMBO J 1989; 11:5013–5020.

    Google Scholar 

  5. Truant M, Antunovic J, Greenblatt J, et al. Direct interaction of the hepatitis B virus HBX protein with p53 leads to inhibition by HBX of p53 response element-directed transactivation. J Virol 1995;69:1851–1859.

    PubMed  CAS  Google Scholar 

  6. Momand J, Zambetti GP, Olson DC, et al. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992;69:1237–1245.

    Article  PubMed  CAS  Google Scholar 

  7. Moll UM, LaQuaglia M, Bénard J, et al. Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci USA 1995;92:4407–4411.

    Article  PubMed  CAS  Google Scholar 

  8. Lamb P, Crawford L. Characterization of the humanp53 gene. Mol Cell Biol 1986;6:1379–1385.

    PubMed  CAS  Google Scholar 

  9. Unger T, Nau MM, Segal S, et al. p53: A transdominant regulator of transcription whose function is ablated by mutations occurring in human cancer. EMBO J 1992;11:1383–1390.

    PubMed  CAS  Google Scholar 

  10. Pavletich NP, Chambers KA, Pabo CO, et al. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev 1993;7:2556–2564.

    Article  PubMed  CAS  Google Scholar 

  11. Wang Y, Reed M, Wang P, et al. p53 domains: Identification and characterization of two autonomous DNA-binding regions. Genes Dev 1993;7:2575–2586.

    Article  PubMed  CAS  Google Scholar 

  12. Bargonetti J, Manfredi JJ, Chen X, et al. A proteolytic fragment from the central region of p53 has marked sequence-specific DNA-binding activity when generated from wild-type but not from oncogenic mutant p53 protein. Genes Dev 1993;7:2565–2574.

    Article  PubMed  CAS  Google Scholar 

  13. Zambetti GP, Levine AJ. A comparison of the biological activities of wild-type and mutant p53. FASEB J 1993;7:855–865.

    PubMed  CAS  Google Scholar 

  14. Pietenpol JA, Tokino T, Thiagalingam S, et al. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc Natl Acad Sci USA 1994;91:1998–2002.

    Article  PubMed  CAS  Google Scholar 

  15. El-Deiry WS, Kern SE, Pietenpol JA, et al. Definition of a consensus binding site for p53. Nature Genet 1992;1:45–49.

    Article  PubMed  CAS  Google Scholar 

  16. Juvan T, Barak Y, Zauberman A, et al. Wild type p53 can mediate sequence-specific transactivation of an internal promoter withinmdm2 gene. Oncogene 1993;8:3411–3416.

    Google Scholar 

  17. Kastan MB, Zhan Q, El-Deiry WS, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in Ataxia-Telangiectasia. Cell 1992;71:587–597.

    Article  PubMed  CAS  Google Scholar 

  18. El-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75:817–825.

    Article  PubMed  CAS  Google Scholar 

  19. Ginsberg D, Mechta F, Yaniv M, et al. Wild-type p53 can downmodulate the activity of various promoters. Proc Natl Acad Sci USA 1991;88:9979–9983.

    Article  PubMed  CAS  Google Scholar 

  20. Goyette MC, Cho K, Fasching CL, et al. Progression of colorectal cancer is associated with multiple tumor suppressor gene defects but inhibition of tumorigenicity is accomplished by correction of any single defect via chromosome transfer. Mol Cell Biol 1992;12:1387–1395.

    PubMed  CAS  Google Scholar 

  21. Backer SJ, Markowitz S, Fearon ER, et al. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 1990; 249:912–915.

    Article  Google Scholar 

  22. Chen P-L, Chen Y, Bookstein R, et al. Genetic mechanism of tumor suppression by the humanp53 gene. Science 1990;250: 1576–1580.

    Article  PubMed  CAS  Google Scholar 

  23. Diller L, Kassel J, Nelson CE, et al. p53 functions as a cell cycle control protein in osteosarcomas. Mol Cell Biol 1990;10:5772–5781.

    PubMed  CAS  Google Scholar 

  24. Casey G, Lo-Hsueh M, Lopez ME, et al. Growth suppression of human breast cancer cells by the introduction of a wild-type p53 gene. Oncogene 1991;6:1791–1797.

    PubMed  CAS  Google Scholar 

  25. Yonish-Rouach K, Resnitzky D, Lotem J, et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 1991;352:345–347.

    Article  PubMed  CAS  Google Scholar 

  26. Takahashi T, Garbone D, Takahashi T, et al. Wild-type but not mutant p53 suppresses the growth of human lung cancer cells bearing multiple genetic lesions. Cancer Res 1992;52:2340–2343.

    PubMed  CAS  Google Scholar 

  27. Yin Y, Tainsky MA, Bischoff FZ, et al. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 1992;70:937–948.

    Article  PubMed  CAS  Google Scholar 

  28. Fujiwara T, Grimm EA, Mukhopadyay T, et al. A retroviral wild-type p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis. Cancer Res 1993;53:4129–4133.

    PubMed  CAS  Google Scholar 

  29. Dumenco L, Oguey D, Wu J, et al. Introduction of a murine p53 mutation corresponding to human codon 249 into a murine hepa-tocyte cell line results in growth advantage, but not in transformation. Hepatology 1995;22:1279–1288.

    PubMed  CAS  Google Scholar 

  30. Milner J, Medcalf EA. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 1991;65:765–774.

    Article  PubMed  CAS  Google Scholar 

  31. Kern SE, Pietenpol JA, Thiagalingam S, et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 1992;256: 827–830.

    Article  PubMed  CAS  Google Scholar 

  32. Doi I, Namba M, Sato J, et al. Establishment and some biological characteristics of human hepatoma cell lines. Gann 1975;66:385–392.

    Google Scholar 

  33. Hsu IC, Tokiwa T, Bennett W, et al. p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines. Carcinogenesis 1993;14:987–992.

    Article  PubMed  CAS  Google Scholar 

  34. Farshid M, Tabor E. Expression of oncogenes and tumor suppressor genes in human hepatocellular carcinoma and hepatoblastoma cell lines. J Med Virol 1992;38:235–239.

    Article  PubMed  CAS  Google Scholar 

  35. Terai S, Matsuzaki Y, Masuhara M, et al. High MDM2 mRNA expression in hepatoblastoma cell lines. Int Hepatol Commun 1995;3:330–336.

    Article  Google Scholar 

  36. Nishida N, Fukuda Y, Kokuryu H, et al. Role and mutational heterogeneity of thep53 gene in hepatocellular carcinoma. Cancer Res 1993;53:368–372.

    PubMed  CAS  Google Scholar 

  37. Levine AJ, Momand J, Finlay CA, et al. Thep53 tumor suppressor gene. Nature 1991;351:453–456.

    Article  PubMed  CAS  Google Scholar 

  38. Aden DP, Fogel A, Plotkin S, et al. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature 1979;282:615–616.

    Article  PubMed  CAS  Google Scholar 

  39. Felgner PL, Gadek TR, Holm M, et al. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987;84:7413–7417.

    Article  PubMed  CAS  Google Scholar 

  40. Harlow E, Williamson NM, Ralston R, et al. Molecular cloning and in vitro expression of a cDNA clone for human cellular tumor antigen p53. Mol Cell Biol 1985;5:1601–1610.

    PubMed  CAS  Google Scholar 

  41. Vistica DT, Skehan P, Scudiero D, et al. Tetrazolium-based assays for cellular viability: A critical examination of selected parameters affecting formazan production. Cancer Res 1991;51:2515–2520.

    PubMed  CAS  Google Scholar 

  42. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–254.

    Article  PubMed  CAS  Google Scholar 

  43. Banks L, Matlashewski G, Crawford L. Isolation of human-p53-specific monoclonal antibodies and their use in the studies of human p53 expression. Eur J Biochem 1986;159:529–534.

    Article  PubMed  CAS  Google Scholar 

  44. MacGregor GR, Caskey CT. Construction of plasmids that expressE. coli β-galactosidase in mammalian cells. Nucleic Acids Res 1989;17:2365.

    Article  PubMed  CAS  Google Scholar 

  45. Neumann JR, Morency CA, Russian KO, et al. A novel rapid assay for chloramphenicol acetyltransferase gene expression. Res Rep Health Eff Inst 1987;5:444–447.

    CAS  Google Scholar 

  46. Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degradated proteins: The PEST hypothesis. Science 1986;234:364–368.

    Article  PubMed  CAS  Google Scholar 

  47. Bhatia K, Goldschmidts W, Gutierrez M, et al. Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect. FASEB J 1993;7: 951–956.

    PubMed  CAS  Google Scholar 

  48. Rogel B, Poplinker M, Webb CG, et al. p53 cellular tumor antigen: Analysis of mRNA level in normal adult tissue, embryos, and tumors. Mol Cell Biol 1985;5:2851–2855.

    PubMed  CAS  Google Scholar 

  49. Michalovitz D, Halevy O, Oren M. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 1990;62:671–680.

    Article  PubMed  CAS  Google Scholar 

  50. Shaulsky G, Goldfinger N, Ben-Ze'ev A, et al. Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol Cell Biol 1990;10: 6565–6577.

    PubMed  CAS  Google Scholar 

  51. Shaulsky G, Ben-Ze'ev A, Rotter V. Subcellular distribution of the p53 protein during the cell cycle of Balb/c3T3 cells. Oncogene 1990;5:1707–1711.

    PubMed  CAS  Google Scholar 

  52. Gannon JV, Lane DP. Protein synthesis required to anchor a mutant p53 protein which is temperature-sensitive for nuclear transport. Nature 1991;349:802–806.

    Article  PubMed  CAS  Google Scholar 

  53. Takahashi K, Sumimoto H, Suzuki K, et al. Protein synthesis-dependent cytoplasmic translocation of p53 protein after serum stimulation of growth-arrested MCF-7 cells. Mol Carcinog 1993; 8:58–66.

    Article  PubMed  CAS  Google Scholar 

  54. Takahashi K, Suzuki K. Association of insulin-like growth-factor-1 induced DNA synthesis with phosphorylation and nuclear exclusion of p53 in human breast cancer MCF-7 cells. Int J Cancer 1993;55:453–458.

    Article  PubMed  CAS  Google Scholar 

  55. Suzuki K, Ono T, Takahashi K. Inhibition of DNA synthesis by TGF-β1 coincides with inhibition of phosphorylation and cytoplasmic translocation of p53 protein. Biochem Biophys Res Commun 1992;183:1175–1183.

    Article  PubMed  CAS  Google Scholar 

  56. Mogi Y, Kato J, Horimoto M, et al. Close correlation between the dephosphorylation of p53 and growth suppression by transforming growth factor-β1 in nasopharyngeal carcinoma cells transduced with adenovirus early region genes. Jpn J Cancer Res 1994;85:459–463.

    PubMed  CAS  Google Scholar 

  57. Hupp TR, Meek DW, Midgley CA, et al. Regulation of the specific DNA binding function of p53. Cell 1992;71:875–886.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terai, S., Noma, T., Kimura, T. et al. Wild-typep53 gene-induced morphological changes and growth suppression in hepatoma cells. J Gastroenterol 32, 330–337 (1997). https://doi.org/10.1007/BF02934489

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02934489

Key words

Navigation