Skip to main content
Log in

Continuous cultivation ofLactobacillus rhamnosus with cell recycling using an acoustic cell settler

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Continuous production of lactic acid from glucose byLactobacillus rhamnosus with cell recycling using an acoustic cell settler was carried out. The performance of the system, such as the concentration of cell and product were compared with the control experiment without recycling. The acoustic settler showed cell separation efficiency of 67% during the continuous operation and the cell concentration in the fermentor with recycle exceeded that of the control by 29%. Compared with the control, lactic acid production was increased by 40%, while glucose consumption was only increased by 8%. The higher value of lactic acid production to substrate consumption (Y P/S, product yield coefficient) achieved by cell recycling is interpreted to indicate that the recycled cell mass consumes less substrate to produce the same amount of product than the control. Within system environmental changes due to the longer mean cell residence time induced the cells maintaining the metabolic pathways to produce less by-product but more product, lactic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moueddeb H., J. Sanchez, C. Bardot, and M. Fick (1996) Membrane bioreactor for lactic acid production.J. Membrane Sci. 114: 59–71.

    Article  CAS  Google Scholar 

  2. Silva, E. M. and S.-T. Yang (1995) Kinetic and stability of a fibrous-bed bioreactor for continuous production of lactic acid from unsupplemented acid whey.J. Biotechnol. 41: 59–70.

    Article  CAS  Google Scholar 

  3. Simon, A., L. Penpenic, N. Gondrexon, S. Taha, and G. Dorange (2000) A comparative study between classical stirred and ultrasonically-assisted dead-end ultrafiltration.Ultrasonics Sonochem. 7: 183–186.

    Article  CAS  Google Scholar 

  4. Hawkes, J. J., M. S. Limaye, and W. T. Coakley (1996) Ultrasonic standing wave removal of microorganisms from suspension in small batch system.J. Microbiol. Met. 27: 211–320.

    Article  Google Scholar 

  5. Hawkes, J. J. and W. T. Coakley (1996) A Continuous flow ultrasonic cell-filtering method.Enzyme Microb. Technol. 19: 57–62.

    Article  CAS  Google Scholar 

  6. Groschl, M., W. Burger, and B. Handle (1998) Ultrasonic separation of suspended particles: Part III. Application in Biotechnology.Acoustica 84: 815–822.

    Google Scholar 

  7. Hawkes, J. J., M. S. Limaye, and W. T. Coakley (1997) Filtration of bacteria and yeast by ultrasound-enhanced sedimentation.J. Appl. Microbiol. 82: 39–47.

    Article  CAS  Google Scholar 

  8. Heine, H., C. Y. Arod, A. R. Bernard, and H. D. Blasey (2000) Ultrasonic cell separation—Production of monoclonal antibodies in continuous perfusion cultures.The 219th ACS National Meeting. March 26–30. San Francisco, USA.

  9. Shin, M. K., K. M. Park, and G. H. Cho (1999) Ultrasonic cell separator as a cell retaining device for high density cultures of plant cell.Bitechnol. Bioprocess Eng. 4: 264–268.

    Article  CAS  Google Scholar 

  10. Zhang, J., A. Collins, M. Chen, I. Knyazev, and R. Gentz (1998) High-density perfusion culture of insect cell with a biosep ultrasonic filter.Biotechnol. Bioeng. 59: 351–359.

    Article  CAS  Google Scholar 

  11. Doblhoff-Dier, O., T. Gaida, H. Katinger, M. GrOschl, W. Burger, and B. Handl (1994) A novel ultrasonic resonance field device for the retention of animal cells.Biotechnol. Prog. 10: 428–432.

    Article  CAS  Google Scholar 

  12. Trampler, F., S. A. Sonderhoff, P. W. S. Pui, D. G. Kilburn, and J. M. Piret (1994) Acoustic cell filter for high density perfusion culture of hybridoma cells.Bio/Technology 12: 281–284.

    Article  CAS  Google Scholar 

  13. Cotton, J. C., A. L. Pometto, and J. Gvozdenovic-Jeremic (2001) Continuous lactic acid fermentation using a plastic composite support biofilm reactor.Appl. Microbiol. Biotechnol. 57: 5–6.

    Google Scholar 

  14. Yoo, I. K., H. N. Chung, E. G. Lee, Y. K. Chang, and S. H. Moon (1997) Effect of B vitamin supplementation on lactic acid production byLactobacillus caser.J. Ferment. Bioeng. 84: 172–175.

    Article  CAS  Google Scholar 

  15. Coakley, W. T. (1997) Ultrasonic separation in analytical biotechnology.Trends Biotechnol 15: 506–511.

    Article  CAS  Google Scholar 

  16. Spengler, J. and M. Jekel (2000) Ultrasound conditioning of suspensions-studies of steaming influence on particle aggregation on a lab-and pilot-scale.Ultrasonics 38: 624–628.

    Article  CAS  Google Scholar 

  17. Allman, R. and W. T. Coakley (1994) Ultrasound enhanced phase partition of microorganism.Bioseparation 4: 29–38.

    CAS  Google Scholar 

  18. Hwang, S.-H. and Y.-M. Koo (2001) Effects of operation and design parameters on the recovery of microorganism and particles in ultrasonic, sedimentation.HWAHAK KONGHAK 39: 788–793.

    CAS  Google Scholar 

  19. Bruno-Barcena J. M., A. L. Ragout, P. R. Cordoba, and F. Sineriz (1999) Continuous production ofl(+)-lactic acid byLactobacillus casei in two-stage system.Appl. Microbiol. Biotechnol. 51: 316–324.

    Article  CAS  Google Scholar 

  20. Kwon, S. H., I.-K. Yoo, W. G. Lee, H. N. Chang, and Y. K. Chang (2001) High-rate continuous production of lactic acid byLactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor.Biotechnol. Bioeng. 73: 25–34.

    Article  CAS  Google Scholar 

  21. A. Gonzalez-Varay R., G. Vaccari, E. Dosi, A. Trilli, M. Rossi, and D. Matteuzzi (1999) Enhanced production ofl-(+)-lactic acid in chemostat byLactobacillus casei DSM20011 using ion-exchange resins and cross-flow filtration in a fully automated pilot controlled via NIR.Biotechnol. Bioeng. 67: 647–655.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-Mo Koo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YJ., Hwang, SH., Lee, SM. et al. Continuous cultivation ofLactobacillus rhamnosus with cell recycling using an acoustic cell settler. Biotechnol. Bioprocess Eng. 7, 357–361 (2002). https://doi.org/10.1007/BF02933521

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02933521

Keywords

Navigation