Skip to main content
Log in

Light body pigmentation in indianDrosophila melanogaster: A likely adaptation to a hot and arid climate

  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

We analysed reaction norms of pigmentation (thorax and abdomen) according to growth temperature for 20 isofemale lines collected near Delhi (India) and compared them to results obtained for two French populations. The climatic conditions of the two locations were strongly different, with monthly average temperature ranging between 4.2°C and 20.5°C in France and between 14.3°C and 34.3°C in India. For each segment, a decrease of the pigmentation was observed with increasing temperature and the shapes of the reaction norms were more or less parallel. On average Indian flies were lighter than French ones, in agreement with the thermal budget hypothesis. We further investigated the shapes of reaction norms by polynomial adjustment and observed significant differences. In several cases, a maximum divergence was observed at high temperature, implying a change in the shape of the norm. Characteristic values related to the thermal reactivity were also significantly different between populations but no general tendency was found. Genetic variability, estimated by the coefficient of intraclass correlation, was significantly lower in India (0.27 ±0.026) than in France (0.39 ±0.028), and we discuss the significance of this difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brakefield P. M., Gates J., Keys D., Kesbeke R, Wijngaarden P. J., Monteiro A., French V. and Carroll S. B. 1996 Development, plasticity and evolution of butterfly eyespot patterns.Nature 384, 236–242.

    Article  PubMed  CAS  Google Scholar 

  • Capy P., David J. R. and Robertson A. 1988 Thoracic trident pigmentation in natural populations ofDrosophila simulans: a comparison withD.melanogaster. Heredity 61, 263–268.

    Article  Google Scholar 

  • Capy P., Pla E. and David J. R. 1993 Phenotypic and genetic variability of morphometrical traits in natural populations ofDrosophila melanogaster andD. simulans. I. Geographic variations.Genet. Set. Evol. 25, 517–536.

    Article  Google Scholar 

  • Coyne J. A. and Beecham E. 1987 Heritability of two morphological characters within and among natural populations ofDrosophila melanogaster.Genetics 117, 727–737.

    PubMed  CAS  Google Scholar 

  • Das A. 1995 Abdominal pigmentation inDrosophila melanogaster females from natural Indian populations.J. Zool. Syst. Evol. 33, 84–87.

    Google Scholar 

  • Das A., Mohanty, S. and Parida B. B. 1994 Abdominal pigmentation and growth temperature in IndianDrosophila melanogaster. evidence for genotype-environment interaction.J. Biosci. 19, 267–275.

    Article  Google Scholar 

  • David J. R. and Clavel M. F. 1965 Interaction entre le genotype et le milieu d’élevage. Conséquences sur les caractéristiques du développement de la Drosophile.Bull. Biol Fr. Belg. 99, 369–378.

    Google Scholar 

  • David J. R., Allemand R., Van Herrewege J. and Cohet Y. 1983 Ecophysiology: abiotic factors. InThe genetics and biology of Drosophila (ed. M. Ashburner, H. L. Carson and J, N. Thompson), pp. 105–170. Academic Press, London.

    Google Scholar 

  • David J. R., Capy P., Payant V. and Tsakas S. 1985 Thoracic trident pigmentation inDrosophila melanogaster: differentiation of geographical populations.Genet. Set. Evol. 17, 211–223.

    Article  Google Scholar 

  • David J. R., Capy P. and Gauthier, J. P. 1990 Abdominal pigmentation and growth temperatures inDrosophila melanogaster. similarities and differences in the norms of reaction of successive segments.J. Evol. Biol. 3, 429–445.

    Article  Google Scholar 

  • David J. R., Moreteau B., Gauthier J. R., Pétavy G., Stockel J. and Imasheva A. 1994 Reaction norms of size characters in relation to growth temperature inDrosophila melanogaster: an isofemale lines analysis.Genet. Set Evol. 26, 229–251.

    Article  Google Scholar 

  • David J. R., Gibert P., Gravot E., Petavy G., Morin J. P., Karan D. and Moreteau B. 1997 Phenotypic plasticity and developmental temperature in Drosophila: analysis and significance of reaction norms of morphometrical traits.J. Therm. Biol. 22, 441–451.

    Article  Google Scholar 

  • De Jong G. 1995 Phenotypic plasticity as a product of selection in a variable environment.Am. Nat. 145, 493–512.

    Article  Google Scholar 

  • De Jong P. W., Gusselkloo S. W. S. and Brakefield P. M. 1996 Differences in thermal balance, body temperature and activity between non-melanic and melanic two-spot ladybird beetles (Adalia bipunctata) under controlled conditions.J. Exp. Biol. 199, 2655–2666.

    PubMed  Google Scholar 

  • Falconer D. S. 1989Introduction to quantitative genetics. Longman, New York.

    Google Scholar 

  • Gibert P., Moreteau B., Moreteau J. C. and David J. R. 1996 Growth temperature and adult pigmentation in two Drosophila sibling species: an adaptive convergence of reaction norms in sympatric populations?Evolution 50, 2346–2353.

    Article  Google Scholar 

  • Gibert P., Moreteau B., David J. R. and Scheiner S. M. 1998 Describing the evolution of reaction norm, shape: body pigmentation in Drosophila.Evolution (in press).

  • Gotthard K. and Nylin S. 1995 Adaptive plasticity as an adaptation: a selective review of plasticity in animal morphology and life histoiy.Oikos 74, 3–17.

    Article  Google Scholar 

  • Goulson D. 1994 Determination of larval melanization in the moth,Mamestra brassicae, and the role of melanin in thermoregulation.Heredity 73, 471–479.

    Article  CAS  Google Scholar 

  • Hoffmann A. A. and Parsons P. A. 1988 The analysis of quantitative variation in natural populations with isofemale strains.Genet. Sel. Evol 20, 87–98.

    Article  Google Scholar 

  • Hoffmann A. A. and Parsons P. A. 1991Evolutionary genetics and environmental stress. Oxford University Press, Oxford.

    Google Scholar 

  • Holloway G. J., Marriott C. G. and Crocker H. J. 1997 Phenotypic plasticity in hoverflies: the relationship between colour pattern and season inEpisyrphus balteatus and other Syrphidae.Ecol. Entomol. 22, 425–432.

    Article  Google Scholar 

  • Imasheva A. G., Loeschcke V., Lazebny O. E. and Zhivotovsky L. A. 1998 Stress temperatures and quantitative variation inDrosophila melanogaster. Heredity (in press).

  • James A. C, Azevedo R. B. R. and Partridge L. 1995 Cellular basis and developmental timing in a size cline ofDrosophila melanogaster.Genetics 140, 659–666.

    PubMed  CAS  Google Scholar 

  • James A. C, Azevedo R. B. and Partridge L. 1997 Genetic and environmental responses to temperature ofDrosophila melanogaster from a latitudinal cline.Genetics 146, 881–890.

    PubMed  CAS  Google Scholar 

  • Kingsolver J. G. and Wiernasz D. C. 1991 Seasonal polyphenism in wing-melanin pattern and thermoregulatory adaptation inPieris butterflies.Am. Nat. 137, 816–830.

    Article  Google Scholar 

  • Møller A. P. and Swaddle J. R. 1997Asymmetry, developmental stability and evolution. Oxford University Press, Oxford.

    Google Scholar 

  • Monteiro A. F., Brakefield P. M. and French V. 1994 The evolutionary genetics and developmental basis of wing pattern variation in the butterflyBicyclus anynana.Evolution 48, 1147–1157.

    Article  Google Scholar 

  • Moreteau B., Petavy G., Gibert P., Morin J. P., Munoz A. and David J. R. 1995 New discriminating traits between females of two sibling species:Drosophila melanogaster andD. simulans (Diptera: Drosophilidae).Ann. Soc. Entomol. Fr. (N.S.) 31, 249–257.

    Google Scholar 

  • Moreteau B., Morin J. P., Gibert P. Petavy G., Pla E. and David J. R. 1997 Shape modification of nonlinear reaction norms according to thermal adaptation: a comparison of two Drosophila species.C.R. Acad. Sci. Paris, Sér III: Sci. Vie 320, 833–841.

    CAS  Google Scholar 

  • Morin J. P., Moreteau B., Pétavy G., Imasheva S. and David J. R. 1996 Body size and developmental temperature inDrosophila simulans. Comparison of reaction norms with sympatricDrosophila melanogaster.Genet. Sel. Evol. 28, 415–436.

    Article  Google Scholar 

  • Munjal A.K., Karan D., Gibert P., Moreteau B., Parkash R. and David J.R. 1997 Thoracic trident pigmentation inDrosophila melanogaster. latitudinal and altitudinal clines in Indian populations.Genet. Sel. Evol. 29, 601–610.

    Article  Google Scholar 

  • Ottenheim M. M., Volmer A. D. and Holloway G. J. 1996 The genetics of phenotypic plasticity in adult abdominal colour pattern ofEristalis arbustorum (Diptera: Syrphidae).Heredity 77, 493–499.

    Article  Google Scholar 

  • Parsons P. A. 1987 Evolutionary rates under environmental stress.Evol. Biol 21, 311–347.

    Google Scholar 

  • Parsons P. A. 1989 Conservation and global warming: a problem in biological adaptation to stress.Ambio 18, 322–325.

    Google Scholar 

  • S. A. S. 1985SAS user’s guide: Statistics. SAS Institute Inc., Cary (NC, USA).

    Google Scholar 

  • Scheiner S. M. 1993a Genetics and evolution of phenotypic plasticity.Annu. Rev. Ecol. Syst. 24, 35–68.

    Article  Google Scholar 

  • Scheiner S.M. 1993b Plasticity as a selectable trait: reply to Via.Am. Nat. 142, 371–373.

    Article  Google Scholar 

  • Schlichting C. D. and Pigliucci M. 1993 Control of phenotypic plasticity via regulatory genes.Am. Nat. 142, 366–370.

    Article  CAS  PubMed  Google Scholar 

  • Van Tienderen P. H. and Koelewijn H. P. 1994 Selection on reaction norms, genetic correlations and constraints.Genet. Res. 64, 115–125.

    Article  PubMed  Google Scholar 

  • Via S. 1992 Models of the evolution of phenotypic plasticity.Trends Ecol. Evol. 7, 63.

    Article  Google Scholar 

  • Via S. 1993 Adaptive phenotypic plasticity: target or by-product of selection in a variable environment?Am. Nat. 142, 352–365.

    Article  CAS  PubMed  Google Scholar 

  • Via S. 1994 The evolution of phenotypic plasticity: what do we really know? InEcological genetics (ed. L. A. Real), pp. 35–57. Princeton University Press, Princeton.

    Google Scholar 

  • Via S., Gomulkiewicz R., De Jong G., Scheiner S. M., Schlichting C. D. and Van Tienderen P. H. 1995 Adaptive phenotypic plasticity: consensus and controversy.Trends Ecol. Evol. 5, 212–217.

    Article  Google Scholar 

  • Watt W. B., 1969 Adaptive significance of pigment polymorphisms inColias butterflies. II. Thermoregulation and photoperiodically controlled melanin variation inColias eurytheme.Proc. Nail. Acad. Set USA 63, 767–774.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Gibert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibert, P., Moreteau, B., Moreteau, JC. et al. Light body pigmentation in indianDrosophila melanogaster: A likely adaptation to a hot and arid climate. J. Genet. 77, 13–20 (1998). https://doi.org/10.1007/BF02933036

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02933036

Keywords

Navigation