Biotechnology and Bioprocess Engineering

, Volume 9, Issue 2, pp 137–142 | Cite as

Microcontact printing of biotin for selective immobilization of streptavidin-fused proteins and SPR analysis

  • Jong Pil Park
  • Seok Jae Lee
  • Tae Jung Park
  • Kyung-Bok Lee
  • Insung S. Choi
  • Sang Yup Lee
  • Min-Gon Kim
  • Bong Hyun Chung
Article

Abstract

In this study, a simple procedure is described for patterning biotin on a glass substrate and then selectively immobilizing proteins of interest onto the biotin-patterned surface. Microcontact printing (μCP) was used to generate the micropattern of biotin and to demonstrate the selective immobilization of proteins by using enhanced green fluorescent protein (EGFP) as a model protein, of which the C-terminus was fused to a core streptavidin (cSA) gene ofStreptomyces avidinii. Confocal fluorescence microscopy was used to visualize the pattern of the immobilized protein (EGFP-cSA), and surface plasmon resonance was used to characterize biological activity of the immobilized EGFP-cSA. The results suggest that this strategy, which consists of a combination of μμCP and cSA-fused proteins, is an effective way for fabricating biologically active substrates that are suitable for a wide variety of applications, one such being the use in protein-protein assays.

Keywords

microcontact printing (μCP) pattern generation protein-protein assay surface plasmon resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Blawas, A. S. and W. M. Reichert (1998) Protein patterning.Biomaterials 19: 595–609.CrossRefGoogle Scholar
  2. [2]
    Mrksich, M. and G. M. Whitesides (1995) Patterning self-assembled monolayers using microcontact printing: A new technology for biosensors.Trends Biotechnol. 13: 228–233.CrossRefGoogle Scholar
  3. [3]
    Wilson, D. S. and S. Nock (2003) Recent developments in protein microarray technology.Angew. Chem. Int. Ed. 42: 494–500.CrossRefGoogle Scholar
  4. [4]
    Zhu, H. and M. Snyder (2003) Protein chip technology.Curr. Opin. Chem. Biol. 7: 55–63.CrossRefGoogle Scholar
  5. [5]
    Wilson, D. S. and S. Nock (2002) Functional protein microarrays.Curr. Opin. Chem. Biol. 6: 81–85.CrossRefGoogle Scholar
  6. [6]
    Mooney, J. F., A. J. Hunt, J. R. McIntosh, C. A. Librerko, D. M. Walba, and C. T. Rogers (1996) Patterning of functional antibodies and other proteins by photolithography of silane monolayers.Proc. Natl. Acad. Sci. USA 93: 12287–12291.CrossRefGoogle Scholar
  7. [7]
    Wybourne, M. N., M. Yan, J. K. W. Keana, and J. C. Wu (1996) Creation of biomolecule arrays by electrostatic immobilization on electron-beam-irradiated polystyrene thin films.Nanotechnology 7: 302–305.CrossRefGoogle Scholar
  8. [8]
    Hengsakul, M. and A. E. G. Cass (1996) Protein patterning with a photoactivatable derivative of biotin.Bioconjugate Chem. 7: 249–254.CrossRefGoogle Scholar
  9. [9]
    Schwarz, A., J. S. Rossier, E. Roulet, N. Mermod, M. A. Roberts, and H. H. Girault (1998) Micropatterning of biomolecules on polymer substrates.Langmuir 14: 5526–5531.CrossRefGoogle Scholar
  10. [10]
    Dewez, J. L., J. B. Lhoest, E. Detrait, V. Berger, C. C. Dupont-Gillain, L. M. Vincent, Y. J. Schneider, P. Bertrand, and P. G. Rouxhet (1998) Adhesion of mammalian cells to polymer surfaces: from physical chemistry of surfaces to selective adhesion on defined patterns.Biomaterials 19: 1441–1445.CrossRefGoogle Scholar
  11. [11]
    Michael, C. P. and C. Y. Huang (1996) A general method for the spatially defined immobilization of biomolecules on glass surfaces using “caged” biotin.Bioconjugate Chem. 7: 317–321.CrossRefGoogle Scholar
  12. [12]
    Sabanayagam, C. R., C. L. Smith, and C. R. Cantor (2000) Oligonucleotide immobilization on micropatterned streptavidin surfaces.Nucleic Acids Res. 28: e33.CrossRefGoogle Scholar
  13. [13]
    Argarana, C. E., I. D. Kuntz, S. Birken, R. Axel, and C. R. Cantor (1986) Molecular cloning and nucleotide sequence of the streptavidin gene.Nucleic Acids Res. 25: 1871–1882.CrossRefGoogle Scholar
  14. [14]
    Sambrook, J. and D. Russell (2001)Molecular Cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.Google Scholar
  15. [15]
    Bain, C. D., E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold.J. Am. Chem. Soc. 111: 321–335.CrossRefGoogle Scholar
  16. [16]
    Hyun, J., Y. Zhu, A. Liebmann-Vinson, T. P. Beebe, and A. Chilkoti (2001) Microstamping on an activated polymer surface: Patterning biotin and streptavidin onto common polymeric biomaterials.Langmuir 17: 6358–6367.CrossRefGoogle Scholar
  17. [17]
    Lee, K.-B., Y. Kim, and I. S. Choi (2003) Pattern generation of cells on polymeric surfaces using surface functionalization and microcontact printing.Bull. Korean Chem. Soc. 24: 161–162.CrossRefGoogle Scholar
  18. [18]
    Lee, K.-B., D. J. Kim, K. R. Yoon, Y. Kim, and I. S. Choi (2003) Patterning Si by using surface functionalization and microcontact printing with a polymeric ink.Korean J. Chem. Eng. 20: 956–959.CrossRefGoogle Scholar
  19. [19]
    Lee, K.-B., K. R. Yoon, S. I. Woo, and I. S. Choi (2003) Surface modification of poly(glycolic acid) (PGA) for biomedical applications.J. Pharm. Sci. 92: 933–937.CrossRefGoogle Scholar
  20. [20]
    Lee, K.-B., D. J. Kim, Z.-W. Lee, S. I. Woo, and I. S. Choi (2004) Pattern generation of biological ligands on a biodegradable poly(glycolic acid) (PGA) film.Langmuir 20: 2531–2535.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2004

Authors and Affiliations

  • Jong Pil Park
    • 1
  • Seok Jae Lee
    • 1
  • Tae Jung Park
    • 1
  • Kyung-Bok Lee
    • 3
  • Insung S. Choi
    • 3
  • Sang Yup Lee
    • 1
    • 2
  • Min-Gon Kim
    • 4
  • Bong Hyun Chung
    • 4
  1. 1.Department of Chemical and Biomolecular Engineering, Bioprocess Engineering Research Center, Center for Ultramicrochemical Process SystemsKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Department of Chemical and Biomolecular Engineering, Bioprocess Engineering Research Center, Department of BioSystems, Bioinformatics Research CenterKorea Advanced Institute of Science and TechnologyDaejeonKorea
  3. 3.Department of ChemistryKorea Advanced Institute of Science and TechnologyDaejeonKorea
  4. 4.BioNanotechnology Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea

Personalised recommendations