Skip to main content
Log in

Characterization and evaluation of a distinct fusion ability in the functionally related cyclic amidohydrolase family enzymes

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The cyclic amidohydrolase family enzymes, which include allantoinase, dihydroorotase, dihydropyrimidinase and (phenyl)hydantoinase, are metal-dependent hydrolases and play a crucial role in the metabolism of purine and pyrimidinein vivo. Each enzyme has been independently characterized, and thus well documented, but studies on the higher structural traits shared by members of this enzyme family are rare due to the lack of comparative study. Here, we report upon the expression inE. coli cells of maltose-binding protein (MBP)- and glutathione S-transferase (GST)-fused cyclic amidohydrolase family enzymes, facilitating also for both simple purification and high-level expression. Interestingly, the native quaternary structure of each enzyme was maintained even when fused with MBP and GST. We also found that in fusion proteins the favorable biochemical properties of family enzymes such as, their optimal pHs, specific activities and kinetic properties were conserved compared to the native enzymes. In addition, MBP-fused enzymes showed remarkable folding abilityin-vitro. Our findings, therefore, suggest that a previously unrecognized trait of this family, namely the ability to functional fusion with some other protein but yet to retain innate properties, is conserved. We described here the structural and evolutionary implications of the properties in this family enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holm, L. and C. Sander (1995) DNA polymerase beta belongs to an ancient nucleotidyltransferase superfamily.Trends Biochem. Sci. 20: 345–347.

    Article  CAS  Google Scholar 

  2. Todd, A. E., C. A. Orengo, and J. M. Thornton (1999) Evolution of protein function, from a structural perspective.Curr. Opin. Chem. Biol. 3: 548–556.

    Article  CAS  Google Scholar 

  3. Zarembinski, T. I., L. W. Hung, H. J. Mueller-Dieckmann, K. K. Kim, H. Yokota, R. Kim, and S. H. Kim (1998) Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics.Proc. Natl. Acad. Sci. USA 95: 15189–15193.

    Article  CAS  Google Scholar 

  4. Chothia, C. (1992) Proteins: One thousand families for the molecular biologist.Nature 357: 543–544.

    Article  CAS  Google Scholar 

  5. Pujadas, G., F. M. Ramirez, R. Valero, and J. Palau (1996) Evolution of beta-amylase: patterns of variation and conservation in subfamily sequences in relation to parsimony mechanisms.Proteins 25: 456–472.

    Article  CAS  Google Scholar 

  6. Jez, J. M., M. J. Bennett, B. P. Schlegel, M. Lewis, and T. M. Penning (1997) Comparative anatomy of the aldoketo reductase superfamily.Biochem. J. 326: 625–636.

    CAS  Google Scholar 

  7. Holm, L. and C. Sander (1997) An evolutionary treasure: unification of a broad set of amidohydrolases related to urease.Proteins 28: 72–82.

    Article  CAS  Google Scholar 

  8. Vogels, G. D. and C. van der Drift (1970) Degradation of purines and pyrimidines by microorganisms.Bacteriol. Rev. 40: 403–468.

    Google Scholar 

  9. Aleksenko, A., W. Liu, Z. Gojkovic, J. Nielsen, and J. Piskur (1999) Structural and transcriptional analysis of the pyrABCN,pyrD andpyrF genes inAspergillus nidulans and the evolutionary origin of fungal dihydroorotases.Mol. Microbiol. 33: 599–611.

    Article  CAS  Google Scholar 

  10. May, O., A. Habenicht, R. Mattes, C. Syldatk, and M. Siemann (1998) Molecular evolution of hydantoinases.Biol. Chem. 379: 743–747.

    CAS  Google Scholar 

  11. Kim, G. J. and H. S. Kim (1998) Identification of the structural similarity in the functionally related amidohydrolases acting on the cyclic amide ring.Biochem. J. 330: 295–302.

    CAS  Google Scholar 

  12. Zimmermann, B. H., N. M. Kemling, and D. R. Evans (1995) Function of conserved histidine residues in mam-malian dihydroorotase.Biochemistry 34: 7038–7046.

    Article  CAS  Google Scholar 

  13. Simmer, J. P., R. E. Kelly, A. G. Jr. Rinker, B. H. Zimmermann, J. L. Scully, H. Kim, and D. R. Evans (1990) Mammalian dihydroorotase: nucleotide sequence, peptide sequences, and evolution of the dihydroorotase domain of the multifunctional protein CAD.Proc. Natl. Acad. Sci. USA 87: 174–178.

    Article  CAS  Google Scholar 

  14. Kim, G. J., D. E. Lee, and H. S. Kim (2000) Construction and evaluation of a novel bifunctionalN-carbamylase-D-hydantoinase fusion enzyme.Appl. Environ. Microbiol. 66: 2133–2138.

    Article  CAS  Google Scholar 

  15. Kim, G. J., D. E. Lee, and H. S. Kim (2000) Functional expression and characterization of the two cyclic amidohydrolase enzymes, allantoinase and a novel phenyl-hydantoinase, fromE. coli.J. Bacteriol. 182: 7021–7028.

    Article  CAS  Google Scholar 

  16. Yuan, G., J. C. Bin, D. J. McKay, and F. F. Snyder (1999) Cloning and characterization of human guanine deaminase. Purification and partial amino acid sequence of the mouse protein.J. Biol. Chem. 274: 8175–8180.

    Article  CAS  Google Scholar 

  17. Cusa, E., N. Obradors, L. Baldoma, J. Badia, and J. Aguilar (1999) Genetic analysis of a chromosomal region containing genes required for assimilation of allantoin nitrogen and linked glyoxylate metabolism inEscherichia coli.J. Bacteriol. 181: 7479–7484.

    CAS  Google Scholar 

  18. Wilson, H. R., P. T. Chan, and C. L. Turnbough Jr (1987) Nucleotide sequence and expression of thepyrC gene ofEscherichia coli K-12.J. Bacteriol. 169: 3051–3058.

    CAS  Google Scholar 

  19. Kim, G. J. and H. S. Kim (1998) C-Terminal regions ofd-hydantoinases are nonessential for catalysis, but affect the oligomeric structure.Biochem. Biophys. Res. Commun. 243: 96–100.

    Article  CAS  Google Scholar 

  20. Brown, D. C. and K. D. Collins (1991) Dihydroorotase fromEscherichia coli. Substitution of Co(II) for the active site Zn(II).J. Biol. Chem. 266: 1597–1604.

    CAS  Google Scholar 

  21. Soong, C. L., J. Ogawa, M. Honda, and S. Shimizu (1999) Cyclic-imide-hydrolyzing activity ofd-hydantoinase fromBlastobacter sp. strain A17p-4.Appl. Environ. Microbiol. 65: 1459–1462.

    CAS  Google Scholar 

  22. Watabe, K., T. Ishikawa, Y. Mukohara, and H. Nakamura (1992) Cloning and sequencing of the genes involved in the conversion of 5-substituted hydantoins to the correspondingl-amino acids from the native plasmid ofPseudomonas sp. strain NS671.J. Bacteriol. 174: 962–969.

    CAS  Google Scholar 

  23. Thompson, J. D., D. G. Higgins, and T. J. Gibson (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Res. 22: 4673–4680.

    Article  CAS  Google Scholar 

  24. Kim, G. J., J. H. Park, D. C. Lee, H. S. Ro, and H. S. Kim (1997) Primary structure, sequence analysis, and expression of the thermostable D-hydantoinase fromBacillus stearothermophilus SD1.Mol. Gen. Genet. 255: 152–156.

    CAS  Google Scholar 

  25. Kapust, R. B. and D. S. Waugh (1999)Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused.Protein Sci. 8: 1668–1674.

    Article  CAS  Google Scholar 

  26. Mukohara, Y., T. Ishikawa, K. Watabe, and H. Nakamura (1994) A thermostable hydantoinase ofBacillus stearothermophilus NS1122A: Cloning, sequencing, and high expression of the enzyme gene, and some properties of the expressed enzyme.Biosci. Biotech. Biochem. 58: 1621–1626.

    CAS  Google Scholar 

  27. Hamajima, N., K. Matsuda, S. Sakata, N. Tamaki, M. Sasaki, and M. Nonaka (1996) A novel gene family defined by human dihydropyrimidinase and three related proteins with differential tissue distribution.Gene 180: 157–163.

    Article  CAS  Google Scholar 

  28. Maley, J. A. and J. N. Davidson (1988) The aspartate transcarbamylase domain of a mammalian multifunctional protein expressed as an independent enzyme inEscherichia coli.Mol. Gen. Genet. 213: 278–284.

    Article  CAS  Google Scholar 

  29. Murley, L. L. and R. E. MacKenzie (1995) The two monofunctional domains of octameric formiminotransferasecyclodeaminase exist as dimmers.Biochemistry 34: 10358–10364.

    Article  CAS  Google Scholar 

  30. Banks, G. R. and S. Y. Taylor (1988) Cloning of the PYR3 gene ofUstilago maydis and its use in DNA transformation.Mol. Cell. Biol. 8: 5417–5424.

    CAS  Google Scholar 

  31. Ogawa, J. and S. Shimizu (1995) Purification and characterization of dihydroorotase fromPseudomonas putida.Arch. Microbiol. 164: 353–357.

    Article  CAS  Google Scholar 

  32. Davidson, J. N., K. C. Chen, R. S. Jamison, L. A. Musmanno, and C. B. Kern (1993) The evolutionary history of the first three enzymes in pyrimidine biosynthesis.BioEssays 15: 157–164.

    Article  CAS  Google Scholar 

  33. Grayson, D. R., L. Lee, and D. R. Evans (1985) Immunochemical analysis of the domain structure of CAD, the multifunctional protein that initiates pyrimidine biosynthesis in mammalian cells.J. Biol. Chem. 260: 15840–15849.

    CAS  Google Scholar 

  34. Williams, N. K., R. J. Simpson, R. L. Moritz, Y. Peide, L. Crofts, E. Minasian, S. J. Leach, R. G. Wake, and R. I. Christopherson (1990) Location of the dihydroorotase domain within trifunctional hamster dihydroorotate synthetase.Gene 94: 283–288.

    Article  CAS  Google Scholar 

  35. Kelly, R. E., M. I. Mally, and D. R. Evans (1986) The dihydroorotase domain of the multifunctional protein CAD. Subunit structure, zinc content, and kinetics.J. Biol. Chem. 261: 6073–6083.

    CAS  Google Scholar 

  36. Williams, N. K., Y. Peide, K. K. Seymour, G. B. Ralston, and R. I. Christopherson (1993) Expression of catalytically active hamster dihydroorotase domain inEscherichia coli: Purification and characterization.Protein Eng. 6: 333–340.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Sung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, GJ., Lee, DE. & Kim, HS. Characterization and evaluation of a distinct fusion ability in the functionally related cyclic amidohydrolase family enzymes. Biotechnol. Bioprocess Eng. 7, 155–162 (2002). https://doi.org/10.1007/BF02932913

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932913

Keywords

Navigation