Skip to main content
Log in

Oxygen isotope fractionation in mantle minerals

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

The increment method is adopted to calculate oxygen isotope fractionation factors for mantle minerals, particularly for the polymorphic phases of MgSiO3 and Mg2SiO4. The results predict the following sequence of18O-enrichment:pyroxene (Mg, Fe, Ca)2Si2O6>olivine (Mg, Fe)2SiO4 > spinel (Mg, Fe)2SiO4> ilmenite (Mg, Fe, Ca) SiO3>perovskite (Mg, Fe, Ca) SiO3. The calculated fractionations for the calcite-perovskite (CaTiO3) System are in excellent agreement with the experimental calibrations. If there would be complete isotopic equilibration in the mantle, the spinel-structured silicates in the transition zone are predicted to be enriched in18O relative to the perovskite-structured silicates in the lower mantle but depleted in18O relative to olivines and pyroxenes in the upper mantle. The oxygen isotope layering of the mantle might result from differences in the chemical composition and crystal structure of mineral phases at different mantle depths. Assuming isotopic equilibrium on a whole earth scale, the chemical structure of the Earth’s interior can be described by the following sequence of18O-enrichment:upper crust>lower crust>upper mantle>transition zone>lower mantle>core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kyser T.K., O’Neil, J.R., Carmichael, I. S. E., Oxygen isotope thermometry of basic lavas and mantle nodule,Contrib. Mineral. Petrol., 1981, 77: 11.

    Article  Google Scholar 

  2. Chiba, H., Chacko, T., Clayton, R. N. et al., Oxygen isotope fractionations involving diopside, forsterite, magnetite and calcite:Application to geothermometry,Geochim. Cosmochim. Acta, 1989, 53: 2985.

    Article  Google Scholar 

  3. Rosenbaum, J. M., Walker, D., Kyser, T. K., Oxygen isotope fractionation in the mantle,Geochim. Cosmochim. Acta, 1994, 58: 4767.

    Article  Google Scholar 

  4. Rosenbaum, J. M., Mattey, D., Equilibrium garnet-calcite oxygen isotope fractionation,Geochim. Cosmochim. Acta, 1995, 59: 2839.

    Article  Google Scholar 

  5. Gautason, B., Chacko, T., Muehlenbachs, K., Oxygen isotope partitioning among perovskite (CaTiO3), cassiterite (SnO2) and calcite (CaCO3),Abstr. Prog. Joint Annual Meeting GAC & MAC, Edmonton, 1993, A34.

  6. Schütze, H., Der Isotopenindes-eine Inkrementmethode zur näherungsweisen Berechnung von Isotopenaustauschgleichgewichten zwischen kristallinen Substanzen,Chem. Erde, 1980, 39: 321.

    Google Scholar 

  7. Zheng, Y.-F., Calculation of oxygen isotope fractionation in metal oxides,Geochim. Cosmochim. Acta, 1991, 55: 2299.

    Article  Google Scholar 

  8. Zheng, Y.-F., Calculation of oxygen isotope fractionation in anhydrous silicate minerals,Geochim. Cosmochim. Acta, 1993, 57: 1079.

    Article  Google Scholar 

  9. Zheng, Y.-F., Oxygen isotope fractionation in metal monoxides,Mineral. Mag., 1994, 58A: 1000.

    Article  Google Scholar 

  10. Muller, O., Roy, R.,The Major Ternary Structural Families, Berlin, Heidelberg, New York:Springer-Verlag, 1974, 487.

    Google Scholar 

  11. Kieffer, S. W., Thermodynamics and lattice vibration of minerals:5. Application to phase equilibria, isotopic fractionation, and high pressure thermodynamic proporties,Rev. Geophys. Space Phys., 1982, 20: 827.

    Article  Google Scholar 

  12. Clayton, R. N., Goldsmith, J. R., Mayeda, T. K., Oxygen isotope fractionation in quartz, albite, anorthite and calcite,Geochim. Cosmochim. Acta, 1989, 53: 725.

    Article  Google Scholar 

  13. Polyakov, V. B., Kharlashina, N. N., Effect of pressure on equilibrium isotopic fractionation,Geochim. Cosmochim. Acta, 1994, 58: 4739.

    Article  Google Scholar 

  14. Hoefs, J.,Stable Isotope Geochemistry, 3rd ed., Berlin, Heidelberg, New York:Springer-Verlag, 1987, 241.

    Google Scholar 

  15. Valley, J. W., Taylor, H. P. Jr., O’Neil, J. R., Stable isotopes in higher temperature geological processes,Reviews in Mineralogy, 1986, 16: 570.

    Google Scholar 

  16. Fowler, M. B., Harmon, R. S., The oxygen isotope composition of lower crustal granulite xenoliths,Granulites and Crustal Evolution (eds. Vielzeuf, D., Vodal, Ph.), Dordrecht:Kluwer Academic Publishers, 1990, 493–506.

    Google Scholar 

  17. Schubert, G., Turcotte, D. L., Phase transition and mantle convection,J. Geophys. Res., 1971, 76: 1424.

    Article  Google Scholar 

  18. Chritsensen, U. R., Yuen, D. A., Layered convection induced by phase transitions,J. Geophys. Res., 1995, 90: 10291.

    Article  Google Scholar 

  19. Tackley, P. J., Mantle dynamics:Influence of the transition zone,Rev. Geophys. (suppl.), US National Report to IUGG, 1995, 275–282.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y., Wei, C., Zhou, G. et al. Oxygen isotope fractionation in mantle minerals. Sci. China Ser. D-Earth Sci. 41, 95–103 (1998). https://doi.org/10.1007/BF02932427

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932427

Keywords

Navigation