Skip to main content
Log in

Effect of molecular chaperones on the soluble expression of alginate lyase inE. coli

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

When the alginate lyase gene (aly) fromPseudoalteromonas elyakovii was expressed inE. coli, most of the gene product was organized as aggregated insoluble particles known as inclusion bodies. To examine the effects of chaperones on soluble and nonaggregated form of alginate lyase inE. coli, we constructed plasmids designed to permit the coexpression ofaly and the DnaK/DnaJ/GrpE or GroEL/ES chaperones. The results indicate that coexpression ofaly with the Dnak/DnaJ/GrpE chaperone together had a marked effect on the yield alginate lyase as a soluble and active form of the enzyme. It is speculated this result occurs through facilitation of the correct folding of the protein. The optimal concentration ofl-arabinose required for the induction of the DnaK/DnaJ/GrpE chaperone was found to be 0.05 mg/mL. An analysis of the protein bands on SDS-PAGE gel indicated that at least 37% of total alginate lyase was produced in the soluble fraction when the DnaK/DnaJ/GrpE chaperone was coexpressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sawabe, T., H. Takahashi, Y. Ezura, and P. Gacesa (2001) Cloning sequence, analysis and expression ofPseudoalteromonas elyakovii IAM 14594 gene (alyPEEC) encoding the extracellular alginate lyase.Carbohydr. Res. 335: 11–21.

    Article  CAS  Google Scholar 

  2. Preiss, J., and G. Ashwell (1962) Alginic acid metabolism in bacteria.J. Biol. Chem. 237: 309–316.

    CAS  Google Scholar 

  3. Yoon, H. J., W. Hashimoto, O. Miyake, M. Okamoto, B. Mikami, and K. Murata (2000) Overexpression inEscherichia coli, purification, and characterization ofSphingomonas sp. A1 alginate lyases.Protein Expr. Purif. 19: 84–90.

    Article  CAS  Google Scholar 

  4. Onsoyen, E. (1996) Commercial applications of alginates.Carbohydr. Eur. 14: 26–31.

    Google Scholar 

  5. Renn, D. (1997) Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects.Trends Biotechnol. 15: 9–14.

    Article  CAS  Google Scholar 

  6. Murata, K., T. Inose, T. Hisano, S. Abe, Y. Yonemoto, T. Yamashita, M. Takagi, K. Sakaguchi, A. Kimura, and T. Imanaka (1993) Bacterial alginate lyase: enzymology, genetics and application.J. Ferment. Bioeng. 76: 427–437.

    Article  CAS  Google Scholar 

  7. Kim, J. E., E. J. Kim, W. J. Rhee, and T. H. Park (2005) Enhanced production of recombinant protein inEscherichia coli using silkworm hemolymph.Biotechnol. Bioprocess Eng. 10: 353–356.

    Article  CAS  Google Scholar 

  8. Jin, H. H., N. S. Han, D. K.Kweon, Y. C. Park, and J. H. Seo (2001) Effects of environmental factors onin vivo folding ofBacillus macerans cyclodextrin glycosyltransferase in recombinantEscherichia coli.J. Microbiol. Biotechnol. 11: 92–96.

    CAS  Google Scholar 

  9. Kim, C. I., M. D. Kim, Y. C. Park, N. S. Han, and J. H. Seo (2000) Refolding ofBacillus macerans cyclodextrin glucanotransferase expressed as inclusion bodies in recombinantEscherichia coli.J. Microbiol. Biotechnol. 10: 632–637.

    CAS  Google Scholar 

  10. Kondo, A., J. Kohda, Y. Endo, T. Shiromizu, Y. Kurokawa, K. Nishihara, H. Yanagi, T. Yura, and H. Fukuda (2000) Improvement of productivity of active horseradish peroxidase inEscherichia coli by coexpression of Dsb proteins.J. Biosci. Bioeng. 90: 600–606.

    Article  CAS  Google Scholar 

  11. Thomas, J. G., A. Ayling, and F. Baneyx (1997) Molecular chaperones, folding catalysis, and the recovery of active recombinant proteins fromE. coli.Appl. Biochem. Biotechnol. 66: 197–238.

    Article  CAS  Google Scholar 

  12. Kim, H., and J. H. Kim (2005) Refolding of fusion ferritin by gel filtration chromatography (GFĆ).Biotechnol. Bioprocess Eng. 10: 500–504.

    Article  CAS  Google Scholar 

  13. Guan, Y.-X., H.-X. Pan, Y.-G. Gao, S.-J. Yao, and M.-G. Cho (2005) Refolding and purification of recombinant human interferon-γ expressed as inclusion bodies inEscherichia coli using size exclusion chromatography.Biotechnol. Bioprocess Eng. 10: 122–127.

    Article  CAS  Google Scholar 

  14. Kwon, M. J., S. L. Park, S. K. Kim, and S. W. Nam (2002) Overproduction ofBacillus macerans cyclodextrin glucanotransferase inE. coli by coexpression of GroEL/ES chaperone.J. Microbiol. Biotechnol. 12: 1002–1005.

    CAS  Google Scholar 

  15. Lamark, T., M. Ingebrigtsen, C. Bjornstad, T. Melkko, T. E. Mollnes, and E. W. Nielsen (2001) Expression of active human C1 inhibitor serpin domain inEscherichia coli.Protein Expr. Purif. 22: 349–358.

    Article  CAS  Google Scholar 

  16. Park, S. L., M. J. Kwon, S. K. Kim, and S. W. Nam (2004) GroEL/ES chaperone and low culture temperature synergistically enhanced the soluble expression of CGTase inE. coli.J. Microbiol. Biotechnol. 14: 216–219.

    CAS  Google Scholar 

  17. Sareen, D., R. Sharma, and R. M. Vohra (2001) Chaper-one-assisted overexpression of an active D-carbamoylase fromAgrobacterium tumefaciens AM 10.Protein Expr. Purif. 23: 374–379.

    Article  CAS  Google Scholar 

  18. Hoshino, K., A. Eda, Y. Kurokawa, and N. Shimizu (2002) Production of brain-derived neurotrophic factor inEscherichia coli by coexpression of Dsb proteins.Biosci. Biotechnol. Biochem. 66: 344–350.

    Article  CAS  Google Scholar 

  19. Kurokawa, Y., H. Yanagi, and T. Yura (2000) Overex-pression of protein disulfide isomerase DsbD stabilize multiple-disulfide-bonded recombinant protein produced and transported to the periplasm inEscherichia coli.Appl. Environ. Microbiol. 66: 3960–3965.

    Article  CAS  Google Scholar 

  20. Han, M. J., S. J. Park, T. J. Park, and S. Y. Lee (2004) Roles and applications of small heat shock proteins in the production of recombinant proteins inEscherichia coli.Biotechnol. Bioeng. 88: 426–436.

    Article  CAS  Google Scholar 

  21. Chung, K. T., T. H. Lee, and G. S. Kang (2003) Isolation of proteins that specifically interact with the ATPase domain of mammalian ER chaperone, BiP.Biotechnol. Bioprocess Eng. 8: 192–198.

    Article  CAS  Google Scholar 

  22. Dumitru, G. L., Y. Groemping, D. Klostermeier, T. Restle, E. Deuerling, and J. Reinstein (2004) DafA cycles between the DnaK chaperone system and translationalmachinery.J. Mol. Biol. 339: 1179–1189.

    Article  CAS  Google Scholar 

  23. Diamant, S., A. P. Ben-Zvi, B. Bukau, and P. Goloubinoff (2000) Size-dependent disaggregation for stable protein aggregates by the DnaK chaperone machinery.J. Biol. Chem. 275: 21107–21113.

    Article  CAS  Google Scholar 

  24. Gragerov, A., E. Nudler, N. Komissarova, G. A. Gaitanaris, M. E. Gottesman, and V. Nikiforov (1992) Cooperation of GroEL/GroES and DnaK/DnaJ heat shock preteins in preventing protein misfolding inEscherichia coli.Proc. Natl. Acad. Sci. USA. 89: 10341–10344.

    Article  CAS  Google Scholar 

  25. Szabo, A., T. Langer, H. Schroder, J. Flanagan, B. Bukau, and F. U. Hartl (1994) The ATP hydrolysis-dependent reaction cycle of theEscherichia coli Hsp70 system-DnaK, DnaJ, and GrpE.Proc. Natl. Acad. Sci. USA 91: 10545–10349.

    Google Scholar 

  26. Weissman, J. S., H. S. Rye, W. A. Fenton, J. M. Beechem, and A. L. Horwich (1996) Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction.Cell 84: 481–490.

    Article  CAS  Google Scholar 

  27. Ying, B. W., H. Taguchi, H. Ueda, and T. Ueda (2004) Chaperone-assisted folding of a single-chain antibody in a reconstituted translation system.Biochem. Biophys. Res. Commun. 320: 1359–1364.

    Article  CAS  Google Scholar 

  28. Nishihara, K., M. Kanemori, M. Kitagawa, H. Yanagi. and T. Yura (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen Cryj2, inEscherichia coli Appl. Environ. Microbiol. 64: 1694–1699.

    CAS  Google Scholar 

  29. Yoon, H. J., Y. J. Choi, O. Miyake, W. Hashimoto, K. Murata, and B. Mikami (2001) Effect of Hisl 92 mutation on the activity of alginate lyase Al-III fromSphingontonas species AI.J. Microbiol. Biotechnol. 11: 118–123.

    CAS  Google Scholar 

  30. Hicks, S. J. and P. Gacesa (1996) Heterologous expression of full-length and truncated forms of the recombinant guluronate-specific alginate lyase ofKlebsiella pneumoniae.Enzyme Microb. Technol. 19: 68–75.

    Article  CAS  Google Scholar 

  31. Gonzalez-Montalban, N., M. M. Carrio, S. Cuatrecasas, A. Aris, and A. Villaverde (2005) Bacterial inclusion bodies are cytotoxicin vivo in absence of functional chaperones DnaK or GroEL.J. Biotechnol. 118: 406–412.

    Article  CAS  Google Scholar 

  32. Park, S. L., E. J. Shin, S. P. Hong, S. J. Jeon, and S. W. Nam (2004) Production of soluble human granulocyte colony stimulating factor inE coli by molecular chaperones.J. Microbiol. Biotechnol. 14: 216–219.

    CAS  Google Scholar 

  33. Chen, Y., J. Song, S. F. Sui, and D. N. Wang (2003) DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed inEscherichia coli.Protein Expr. Purif 32: 221–231.

    Article  CAS  Google Scholar 

  34. Kwak, Y. H., S. J. Kim, K. Y. Lee, and H. B. Kim (2000) Stress responses of theEscherichia coli groE promoter.J. Microbiol. Biotechnol. 10: 63–68.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Wan Nam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, EJ., Park, SL., Jeon, SJ. et al. Effect of molecular chaperones on the soluble expression of alginate lyase inE. coli . Biotechnol. Bioprocess Eng. 11, 414–419 (2006). https://doi.org/10.1007/BF02932308

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932308

Keywords

Navigation