Effects of dietary fructan on cecal enzyme activities in rats

Abstract

In this study, we have attempted to determine the effects of dietary fructose polymers (fructan), high molecular-weight β-(2,6)-linked levan, and low-molecular-weight β-(2,1)-linked inulin, on two intestinal enzymes (β-glucuronidase and β-glucosidase). As a preliminary experiment, when intestinal microflora were cultured in anaerobic media harboring levan or its oligosaccharides, bacterial cell growth was observed in the levanoligosaccharide-supplemented media, but not in the levan-supplemented media, indicating that levan’s size is important for the utilization by intestinal bacteria of levan as an energy source. In our animal study, the intake of a levan-rich diet was determined to significantly attenuate the activity of the harmful enzyme β-glucuronidase, but did not affect the activity of β-glucosidase.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Kim, H., H. J. Eom, J. S. Lee, J. S. Han, and N. S. Han (2004) Statistical optimization of medium composition for growth ofLeuconostoc citreum.Biotechnol. Bioprocess Eng. 9: 278–284.

    Article  CAS  Google Scholar 

  2. [2]

    Mitsuoka, T. (1982) Recent trends in research on intestinal flora.Bifido. Microflora 1: 3–24.

    Google Scholar 

  3. [3]

    Lin, J. Q., S. M. Lee, and Y. M. Koo (1992) Modeling and simulation of lactic acid fermentation with inhibition effects of lactic acid and glucose.Biotechnol. Bioprocess Eng. 9: 52–58.

    Article  Google Scholar 

  4. [4]

    Mitsuoka, T. (1992) Intestinal flora and aging.Nutr. Rev. 50: 438–446.

    CAS  Google Scholar 

  5. [5]

    Hill, M. J., B. S. Drasar, V. Aries, J. Crowther, G. Hawkesworth, and R. E. O. Williams (1971) Bacteria and etiology of cancer of the large bowel.Lancet 1: 95–102.

    Article  CAS  Google Scholar 

  6. [6]

    Kinoshita, N. and H. V. Gelvoin (1978) β-glucuronidase catalyzed hydrolysis of benzo-a-pyrene-glucuronide and binding to DNA.Science 199: 307–311.

    Article  CAS  Google Scholar 

  7. [7]

    Brockett, M. and G. W. Tannock (1982) Dietary influence on microbial activities in the caecum of mice.Can. J. Microbiol. 28: 493–498.

    CAS  Article  Google Scholar 

  8. [8]

    Rhee, S. K., K. B. Song, C. H. Kim, B. S. Park, E. K. Jang, and K. H. Jang (2002) Levan. pp. 351–377. In: S. De Baets, E. J. Vandamme, and A. Steinbuchel (eds.),Biopolymers. Wiley-VCH. Weinheim, Germany.

    Google Scholar 

  9. [9]

    Seo, E. S., J. H. Lee, J. Y. Cho, M. Y. Seo, H. S. Leo, S. S. Chang, H. J. Lee, J. S. Choi, and D. M. Kim (2004) Synthesis and characterization of fructooligosaccharides using levansucrase with a high concentration of sucrose.Biotechnol. Bioprocess Eng. 9: 339–344.

    Article  CAS  Google Scholar 

  10. [10]

    Bae, E. A., M. J. Han, and D. H. Kim (2001) Effect ofLentinus edodes water extract on some enzymes of mouse intestinal bacteria.Korean J. Food Sci. Technol. 33: 142–145.

    Google Scholar 

  11. [11]

    Kim, D. H., H. J. Kang, S. W. Kim, and K. Kobashi (1992) pH-Inducible β-glucuronidase and β-glucosidase of intestinal bacteria.Biol. Pharm. Bull. 40: 1667–1669.

    CAS  Google Scholar 

  12. [12]

    Marx, S. P., S. Winkler, and W. Hartmeier (2000) Metabolization of β-(2,6)-linked fructose-oligosaccharides by different Bifidobacteria.FEMS Microbiol. Lett. 182: 165–169.

    Google Scholar 

  13. [13]

    Kang, S. K., S. J. Park, J. D. Lee, and T. H. Lee (2000) Physiological effects of levanoligosaccharide on growth of intestinal microflora.J. Korean Soc. Food. Sci. Nutr. 29: 33–40.

    Google Scholar 

  14. [14]

    Gibson, G. R. and M. B. Roberfroid (1995) Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics.J. Nutr. 125: 1401–1412.

    CAS  Google Scholar 

  15. [15]

    Rhee, Y. K., D. H. Kim, and M. J. Han (1998) Inhibitory effect ofZizyphi fructus on β-glucuronidase and tryptophanase of human intestinal bacteria.Korean J. Food Sci. Technol. 30: 199–205.

    Google Scholar 

  16. [16]

    Rowland, I. R., A. Mallet, and A. Wise (1983) A comparison of the activity of five microbial enzymes in cecal content from rats, mice and hamster, and response to dietary pectin.Toxicol. Appl. Pharmacol. 1983: 143–148.

    Article  Google Scholar 

  17. [17]

    Srikumar, T. S. (2000) Effects of consumption of white bread and brown bread on the concentrations of bile acids and neutral steroids and on fecal enzyme activities.Nutr. Res. 20: 327–333.

    Article  CAS  Google Scholar 

  18. [18]

    Rao, C. V., D. Chou, H. Ku, and B. S. Reddy (1998) Prevention of colonic aberrant crypt foci and modulation of large bowel microbial activity by dietary coffee fiber, inulin and pectin.Carcinogenesis 19: 1815–1819.

    Article  CAS  Google Scholar 

  19. [19]

    Lee, C. M., D. W. Kim, H. C. Lee, and K. Y. Lee (2004) Pectin microspheres for oral colon delivery: preparation using spray draying method andin vitro release of indomethacin.Biotechnol. Bioprocess Eng. 9: 191–195.

    Article  CAS  Google Scholar 

  20. [20]

    Buddington, R. K., C. H. Williams, S. C. Chen, and S. A. Witherly (1986) Dietary supplement of Neosugar aliers the fecal flora and decreases activities of some reductive enzymes in human subjects.Am. J. Clin. Nutr. 63: 706–716.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ki-Hyo Jang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kang, S.A., Chun, U. & Jang, KH. Effects of dietary fructan on cecal enzyme activities in rats. Biotechnol. Bioprocess Eng. 10, 582–586 (2005). https://doi.org/10.1007/BF02932298

Download citation

Keywords

  • levan
  • inulin
  • fructan
  • prebiotics
  • intestinal microflora