Skip to main content
Log in

Effects of dietary fructan on cecal enzyme activities in rats

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, we have attempted to determine the effects of dietary fructose polymers (fructan), high molecular-weight β-(2,6)-linked levan, and low-molecular-weight β-(2,1)-linked inulin, on two intestinal enzymes (β-glucuronidase and β-glucosidase). As a preliminary experiment, when intestinal microflora were cultured in anaerobic media harboring levan or its oligosaccharides, bacterial cell growth was observed in the levanoligosaccharide-supplemented media, but not in the levan-supplemented media, indicating that levan’s size is important for the utilization by intestinal bacteria of levan as an energy source. In our animal study, the intake of a levan-rich diet was determined to significantly attenuate the activity of the harmful enzyme β-glucuronidase, but did not affect the activity of β-glucosidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, H., H. J. Eom, J. S. Lee, J. S. Han, and N. S. Han (2004) Statistical optimization of medium composition for growth ofLeuconostoc citreum.Biotechnol. Bioprocess Eng. 9: 278–284.

    Article  CAS  Google Scholar 

  2. Mitsuoka, T. (1982) Recent trends in research on intestinal flora.Bifido. Microflora 1: 3–24.

    Google Scholar 

  3. Lin, J. Q., S. M. Lee, and Y. M. Koo (1992) Modeling and simulation of lactic acid fermentation with inhibition effects of lactic acid and glucose.Biotechnol. Bioprocess Eng. 9: 52–58.

    Article  Google Scholar 

  4. Mitsuoka, T. (1992) Intestinal flora and aging.Nutr. Rev. 50: 438–446.

    CAS  Google Scholar 

  5. Hill, M. J., B. S. Drasar, V. Aries, J. Crowther, G. Hawkesworth, and R. E. O. Williams (1971) Bacteria and etiology of cancer of the large bowel.Lancet 1: 95–102.

    Article  CAS  Google Scholar 

  6. Kinoshita, N. and H. V. Gelvoin (1978) β-glucuronidase catalyzed hydrolysis of benzo-a-pyrene-glucuronide and binding to DNA.Science 199: 307–311.

    Article  CAS  Google Scholar 

  7. Brockett, M. and G. W. Tannock (1982) Dietary influence on microbial activities in the caecum of mice.Can. J. Microbiol. 28: 493–498.

    Article  CAS  Google Scholar 

  8. Rhee, S. K., K. B. Song, C. H. Kim, B. S. Park, E. K. Jang, and K. H. Jang (2002) Levan. pp. 351–377. In: S. De Baets, E. J. Vandamme, and A. Steinbuchel (eds.),Biopolymers. Wiley-VCH. Weinheim, Germany.

    Google Scholar 

  9. Seo, E. S., J. H. Lee, J. Y. Cho, M. Y. Seo, H. S. Leo, S. S. Chang, H. J. Lee, J. S. Choi, and D. M. Kim (2004) Synthesis and characterization of fructooligosaccharides using levansucrase with a high concentration of sucrose.Biotechnol. Bioprocess Eng. 9: 339–344.

    Article  CAS  Google Scholar 

  10. Bae, E. A., M. J. Han, and D. H. Kim (2001) Effect ofLentinus edodes water extract on some enzymes of mouse intestinal bacteria.Korean J. Food Sci. Technol. 33: 142–145.

    Google Scholar 

  11. Kim, D. H., H. J. Kang, S. W. Kim, and K. Kobashi (1992) pH-Inducible β-glucuronidase and β-glucosidase of intestinal bacteria.Biol. Pharm. Bull. 40: 1667–1669.

    CAS  Google Scholar 

  12. Marx, S. P., S. Winkler, and W. Hartmeier (2000) Metabolization of β-(2,6)-linked fructose-oligosaccharides by different Bifidobacteria.FEMS Microbiol. Lett. 182: 165–169.

    Google Scholar 

  13. Kang, S. K., S. J. Park, J. D. Lee, and T. H. Lee (2000) Physiological effects of levanoligosaccharide on growth of intestinal microflora.J. Korean Soc. Food. Sci. Nutr. 29: 33–40.

    Google Scholar 

  14. Gibson, G. R. and M. B. Roberfroid (1995) Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics.J. Nutr. 125: 1401–1412.

    CAS  Google Scholar 

  15. Rhee, Y. K., D. H. Kim, and M. J. Han (1998) Inhibitory effect ofZizyphi fructus on β-glucuronidase and tryptophanase of human intestinal bacteria.Korean J. Food Sci. Technol. 30: 199–205.

    Google Scholar 

  16. Rowland, I. R., A. Mallet, and A. Wise (1983) A comparison of the activity of five microbial enzymes in cecal content from rats, mice and hamster, and response to dietary pectin.Toxicol. Appl. Pharmacol. 1983: 143–148.

    Article  Google Scholar 

  17. Srikumar, T. S. (2000) Effects of consumption of white bread and brown bread on the concentrations of bile acids and neutral steroids and on fecal enzyme activities.Nutr. Res. 20: 327–333.

    Article  CAS  Google Scholar 

  18. Rao, C. V., D. Chou, H. Ku, and B. S. Reddy (1998) Prevention of colonic aberrant crypt foci and modulation of large bowel microbial activity by dietary coffee fiber, inulin and pectin.Carcinogenesis 19: 1815–1819.

    Article  CAS  Google Scholar 

  19. Lee, C. M., D. W. Kim, H. C. Lee, and K. Y. Lee (2004) Pectin microspheres for oral colon delivery: preparation using spray draying method andin vitro release of indomethacin.Biotechnol. Bioprocess Eng. 9: 191–195.

    Article  CAS  Google Scholar 

  20. Buddington, R. K., C. H. Williams, S. C. Chen, and S. A. Witherly (1986) Dietary supplement of Neosugar aliers the fecal flora and decreases activities of some reductive enzymes in human subjects.Am. J. Clin. Nutr. 63: 706–716.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Hyo Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, S.A., Chun, U. & Jang, KH. Effects of dietary fructan on cecal enzyme activities in rats. Biotechnol. Bioprocess Eng. 10, 582–586 (2005). https://doi.org/10.1007/BF02932298

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932298

Keywords

Navigation