Skip to main content
Log in

Electrical recognition of label-free oligonucleotides upon streptavidin-modified electrode surfaces

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

For the purpose of developing a direct label-free electrochemical detection system, we have systematically investigated the electrochemical signatures of each step in the preparation procedure, from a bare gold electrode to the hybridization of label-free complementary DNA, for the streptavidin-modified electrode. For the purpose of this investigation, we obtained the following pertinent data; cyclic voltammogram measurements, electrochemical impedance spectra and square wave voltammogram measurements, in Fe(CN)6 3−/Fe(CN)6 4− solution (which was utilized as the electron transfer redox mediator). The oligonucleotide molecules on the streptavidin-modified electrodes exhibited intrinsic redox activity in the ferrocyanide-mediated electrochemical measurements. Furthermore, the investigation of electrochemical electron transfer, according to the sequence of oligonucleotide molecules, was also undertaken. This work demonstrates that direct label-free oligonucleotide electrical recognition, based on biofunctional streptavidin-modified gold electrodes, could lead to the development of a new biosensor protocol for the expansion of rapid, cost-effective detection systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ebersole, R. C., J. A. Miller, J. R. Moran, and M. D. Ward (1990) Spontaneously formed functionally active avidin monolayers on metal surfaces: a strategy for immobilizing biological reagents and design of piezoelectric biosensors.J. Am. Chem. Soc. 112: 3239–3241.

    Article  CAS  Google Scholar 

  2. Wang, J., G. Rivas, J. R. Fernandes, J. L. L. Paz, M. Jiang, and R. Waymire (1998) Indicator-free electrochemical DNA hybridization biosensor.Anal. Chim. Acta 375: 197–203.

    Article  CAS  Google Scholar 

  3. Johnston, D. H., K. C. Glasgow, and H. H. Thorp (1995) Electrochemical measurement of the solvent accessibility of nucleobasis using electron transfer between DNA and metal complexes.J. Am. Chem. Soc. 117: 8933–8938.

    Article  CAS  Google Scholar 

  4. Park, J. W., H. Y. Lee, J. M. Kim, R. Yamasaki, T. Kanno, H. Tanaka, H. Tanaka, and T. Kawai (2004) Electrochemical detection of nonlabeled oligonucleotide DNA using the biotin-modified DNA(ss) on streptavidin-medified gold electrode.J. Biosci. Bioeng. 97: 29–32.

    CAS  Google Scholar 

  5. Kim, J. M., R. Yamasaki, J. W. Park, H. S. Jung, H. Y. Lee, and T. Kawai (2004) Stable high ordered protein layers confirmed by atomic force microscopy and quartz crystal microbalance.J. Biosci. Bioeng. 97: 140–142.

    Google Scholar 

  6. Lee, H. Y., J. W. Park, H. S. Jung, J. M. Kim, and T. Kawai (2004) Electrochemical assay of nonlabeled DNA chip and SNOM imaging by using streptavidin-biotin interaction.J. Nanosci. Nanotechnol. 4: 882–885.

    Article  CAS  Google Scholar 

  7. Lee, H. Y., J. W. Park, and T. Kawai (2004) SNPs feasibility of nonlabeled oligonucletides onby using electrochemical sensing.Electroanalysis 16: 1999–2002.

    Article  CAS  Google Scholar 

  8. Kim, J. M., H. S. Jung, J. W. Park, H. Y. Lee, and T. Kawai (2004) AFM phase lag mapping for protein-DNA oligonucleotide complexes.Anal. Chim. Acta 525: 151–157.

    Article  CAS  Google Scholar 

  9. Kelley, S. O., J. K. Barton, N. M. Jackson, and M. G. Hill (1997) Electrochemistry of methylene blue bound to a DNA-modified electrode.Bioconjugate Chem. 8: 31–37.

    Article  CAS  Google Scholar 

  10. Drummond, T. G., M. G. Hill, and J. K. Barton (2003) Electrochemical DNA sensors.Nat. Biotechnol. 21: 1192–1199.

    Article  CAS  Google Scholar 

  11. Napier, M. E., C. R. Loomis, M. F. Sistare, J. Kim, A. E. Eckhardt, and H. H. Thorp (1997) Probing biomolecule recognition with electron transfer: electrochemical sensors for DNA hybridization.Bioconjugate Chem. 8: 906–913.

    Article  CAS  Google Scholar 

  12. Yang, M., M. E. McGovern, and M. Thompson (1997) Genosensor technology and the detection of interfacial nucleic acid chemistry.Anal. Chim. Acta 346: 259–275.

    CAS  Google Scholar 

  13. Sosnowski, R. G., E. Tu, W. F. Butler, J. P. O’Connell, and M. J. Heller (1997) Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control.Proc. Natl. Acad. Sci. 94: 1119–1123.

    Article  CAS  Google Scholar 

  14. Yu, C. J., Y. Wan, H. Yowanto, J. Li, C. Tao, M. D. James, C. L. Tan, G. F. Blackburn, and T. J. Meade (2001) Electronic detection of single-base mismatches in DNA with ferrocene-modified probes.J. Am. Chem. Soc. 123: 11155–11161.

    Article  CAS  Google Scholar 

  15. Zhang, L. and X. Lin (2005) Electrochemical behavior of a covalently modified glassy carbon electrode with aspartic acid and its use for voltammetric differentiation of dopamine and ascorbic acid.Anal. Bioanal. Chem. 382: 1669–1677.

    Article  CAS  Google Scholar 

  16. Simokawa, N., A. Hirano, and M. Sugawara (2001) An ion-channel sensor for abasic sites in DNA.Anal. Sci. 17: 1379–1382.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hea Yeon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.W., Jung, H.S., Lee, H.Y. et al. Electrical recognition of label-free oligonucleotides upon streptavidin-modified electrode surfaces. Biotechnol. Bioprocess Eng. 10, 505–509 (2005). https://doi.org/10.1007/BF02932285

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932285

Keywords

Navigation