Skip to main content
Log in

Amphiphilic amine-N-oxides with aliphatic alkyl chain act as efficient superoxide dismutase mimics, antioxidants and lipid peroxidation blockers in yeast

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Amphiphilic 3-(alkanoylamino)propyldimethylamine-N-oxides with different length of the alkyl chain,i.e. different hydrophilic-lipophilic balance, act in micromolar concentrations as SOD mimics by lifting the inhibition of aerobic growth caused by SOD deletions inSaccharomyces cerevisiae. They also enhance the survival ofsod mutants ofS. cerevisiae exposed to the hydrophilic superoxide-generating prooxidant paraquat and the amphiphilic hydroperoxide-producingtert-butylhydroperoxide (TBHP), and largely prevent TBHP-induced peroxidation of isolated yeast plasma membrane lipids. Unlike the SOD-mimicking effect, the magnitude of these effects depends on the alkyl chain length of the amine-N-oxides, which incorporate intoS. cerevisiae membranes, causing fluidity changes in both the hydrophilic surface part of the membrane and the membrane lipid matrix. Unlike wild-type strains, the membranes ofsod mutants were found to contain polyunsaturated fatty acids; the sensitivity of the mutants to lipophilic pro-oxidants was found to increase with increasing content of these acids.sod mutants are useful in assessing pro- and antioxidant properties of different compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HLB:

hydrophilic-lipophilic balance

LPO:

lipid peroxidation

NBD-PE:

N-(7-nitrobenz-2-oxa-1,3diazol-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, triethylammonium salt

PDA:

3-(alkanolyamino)propyldimethylamine-N-oxide

PUFA:

oligounsaturated fatty acids

PCR:

polymerase chain reaction

ROS:

reactive oxygen species

SOD:

superoxide dismutase (EC 1.15.1.1)

SUV:

small unilamellar vesicles

TBHP:

tert-butylhydroperoxide

TBRS:

2-thiobarbituric acid-reactive substances

TMA-DPH:

N,N,N-trimethyl-4-(6-phenyl-1,3,5-hexatrien-1-yl)phenylammonium 4-toluenesulfonate

References

  • Allen C.F., Good P.: Acyl lipids in photosynthetic systems.Meth.Enzymol. 123, 523–547 (1997).

    Google Scholar 

  • Aust S.D.: Thiobarbituric acid assay reactants.Meth.Toxicol. 1B, 367–374 (1994).

    CAS  Google Scholar 

  • Balzi E., Chen W., Ulaszewski S., Capieaux E., Goffeau A.: The multidrug resistance gene PDR1 fromSaccharomyces cerevisiae.J.Biol.Chem. 262, 16871–16879 (1987).

    PubMed  CAS  Google Scholar 

  • Batinic H.I., Liochev S.I., Spasojevic I., Fridovich I.: A potent superoxide dismutase mimic: manganese β-octabromo-meso-tetrakis-(N-methylpyridinium-4-yl)-porphyrin.Arch.Biochem.Biophys. 343, 225–233 (1997).

    Article  Google Scholar 

  • Benov L., Fridovich I.: A superoxide dismutase mimic protectssodA, sodB Escherichia coli against aerobic heating and stationary-phase death.Arch.Biochem.Biophys. 322, 20–28 (1996).

    Google Scholar 

  • Blagović B., Rupčić J., Mesarić M., Marić V.: Lipid analysis of the plasma membrane and mitochondria of brewer’s yeast.Folia Microbiol. 50, 24–30 (2005).

    Article  Google Scholar 

  • Blough N.V.: Electron paramagnetic resonance measurements of photochemical radical production in humic substances. I. Effect of O2 and charge on radical scavenging by nitroxides.Environ.Sci.Technol. 22, 77–82 (1988).

    Article  CAS  Google Scholar 

  • Boccu E., Velo G.P., Veronese F.M.: Pharmacokinetic properties of polyethylene glycol derivatized superoxide dismutase.Pharmacol.Res.Commun. 14, 113–120 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Dufour J.P., Amory A., Goffeau A.: Plasma membrane ATPase from the yeastSchizosaccharomyces pombe.Meth.Enzymol. 157, 513–528 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Frimer A.A., Strul G., Buch J., Gottlieb H.E.: Can superoxide organic chemistry be observed within the liposomal bilayer?Free Rad.Biol.Med. 20, 843–852 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Güldener U., Heck S., Fiedler T., Beinhauer J., Hegemann J.H.: A new efficient gene disruption cassette for repeated use in budding yeast.Nucl.Acids Res. 24, 2519–2524 (1996).

    Article  PubMed  Google Scholar 

  • Halliwell B., Gutteridge J.M.C.:Free Radicals in Biology and Medicine, 2nd ed. Clarendon Press, Oxford (UK) 1989.

    Google Scholar 

  • Jemioła-Rzeminska M., Kruk J., Skowronek M., Strzałka K.: Location of ubiquinone homologues in liposome membranes studied by fluorescence anisotropy of diphenyl-hexatriene and trimethylammonium-diphenyl-hexatriene.Chem.Phys.Lipids 79, 55–63 (1996).

    Article  PubMed  Google Scholar 

  • Kleszczynska H., Oswiecimska M., Bonarska D., Sarapuk J.: Antioxidative properties of pyrrolidimum and piperidinium salts.Z.Naturforsch. 57c, 344–347 (2002).

    Google Scholar 

  • Kocherginsky N., Swartz H.M.:Nitroxide Spin Labels: Reactions in Biology and Chemistry. CRC Press, Boca Raton (USA) 1995.

    Google Scholar 

  • Krasowska A., Stasiuk M., Oswięcimska M., Kozubek A., Bien M., Witek S., Sigler K.: Suppression of radical-induced lipid peroxidation in a model system by alkyl esters of cinnamate quaternary ammonium salts.Z.Naturforsch. 56c, 878–885 (2001).

    Google Scholar 

  • Krasowska A., Chmielewska L., Gapa D., Prescha A., Vachova L., Sigler K.: Viability and formation of conjugated dienes in plasma membrane lipids ofS. cerevisiae, S. pombe, R. glutinis, andC. albicans exposed to hydrophilic, amphiphilic and hydrophobic pro-oxidants.Folia Microbiol. 47, 145–151 (2002).

    Article  CAS  Google Scholar 

  • Krasowska A., Dziadkowiec D., Lukaszewicz M., Wojtowicz K., Sigler K.: Effect of antioxidants onSaccharomyces cerevisiae mutants deficient in superoxide dismutases.Folia Microbiol. 48, 754–760 (2003).

    Article  CAS  Google Scholar 

  • Lentz B.R.:Spectroscopic Membrane Probes (L.M. Loew, Ed.). CRC Press, Boca Raton (USA) 1988.

    Google Scholar 

  • Lewinska A., Bilinski T., Bartosz G.: Limited effectiveness of antioxidants in the protection of yeast defective in antioxidant proteins.Free Rad.Res. 38, 1159–1165 (2004).

    Article  CAS  Google Scholar 

  • Manfredini V., Duarte Martins V., Do Carmo Ruaro Peralba M., Silveira Benfato M.: Adaptative response to enhanced basal oxidative damage insod mutants fromSaccharomyces cerevisiae.Mol.Cell.Biochem. 276, 175–181 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Nagele A., Lengfelder E.: The superoxide dismutase-mimic copper-putrescine-pyridine suppresses lipid peroxidation in CHO cells. Implications for its prooxidative mechanisms of action.Free Rad.Res. 25, 109–115 (1996).

    Article  CAS  Google Scholar 

  • Nilsson U.A., Olsson L.I., Carlin G., Bylund F.A.: Inhibition of lipid peroxidation by spin labels. Relationships between structure and function.J.Biol.Chem. 264, 11131–11135 (1989).

    PubMed  CAS  Google Scholar 

  • Offer T., Mohsen M., Samuni A.A.: SOD-mimicry mechanism underlies the role of nitroxides in protecting papain from oxidative inactivation.Free Rad.Biol.Med. 25, 832–838 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Prescha A., Swiedrych A., Biernat T., Szopa J.: Increase in lipid content in potato tubers modified by 14-3-3 gene overexpression.J.Agric.Food Chem. 49, 3638–3643 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Samuni A.M., Barenholz Y.: Stable nitroxide radicals protect lipid acyl chains from radiation damage.Free Rad.Biol.Med. 22, 1165–1174 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Samuni A.M., Barenholz Y.: Site-activity relationship of nitroxide radical’s antioxidative effect.Free Rad.Biol.Med. 34, 177–185 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Singh B., Oberoi G.K., Sharma S.: Effect of pH stress on lipid composition ofSaccharomyces cerevisiae.Indian J.Exp.Biol. 28, 430–433 (1990).

    PubMed  CAS  Google Scholar 

  • Wach A., Brachat A., Rebischung C., Steiner S., Pokorni K., Heesen S., Philippsen P.: PCR-based gene targeting inSaccharomyces cerevisiae.Meth.Microbiol. 26, 67–81 (1998).

    Article  CAS  Google Scholar 

  • Weiss R.H., Fretland D.J., Baron D.A., Ryan U.S., Riley D.P.: Manganese-based superoxide dismutase mimetics inhibit neutrophil infiltrationin vivo.J.Biol.Chem. 271, 26149–26156 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Żyracka E., Zadrąg R., Kozioł S., Krzepiłko A., Bartosz G., Bilinski T.: Yeast as a biosensor for antioxidants: simple growth tests employing aSaccharomyces cerevisiae mutant defective in superoxide dismutase.Acta Biochim.Polon. 52, 679–684 (2005).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Krasowska.

Additional information

This work was supported byPolish Committee for Scientific Research grant 3 T09B 075 27, byWrocław University grant 2483/W/IGIM,Czech Ministry of Education Research Centre 1M0570, and by theInstitutional Research Concept AV 0Z 5020 0510.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasowska, A., Piasecki, A., Polinceusz, A. et al. Amphiphilic amine-N-oxides with aliphatic alkyl chain act as efficient superoxide dismutase mimics, antioxidants and lipid peroxidation blockers in yeast. Folia Microbiol 51, 99–107 (2006). https://doi.org/10.1007/BF02932163

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932163

Keywords

Navigation