Skip to main content
Log in

Survival and motility of diatomsNavicula grimmei andNitzschia palea affected by some physical and chemical factors

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Navicula grimmei andNitzschia palea occurring almost equally in a mixed population on department moist garden soil surface when maintained in fresh supernatant (of soil-water medium) at pH 7.0, temperature of 26 ± 1 °C and under continuous light (intensity of ≈30 µmol m−2 s−1) in a culture chamber exhibited a similar cell survival period (of 28 d) and percentage (at the beginning 100 % and mid of survival period 65 %) and stop gliding 11 d prior to cell death (with gliding speed reduced in both from 204–330 µm/min at the beginning to 82.5–99 µm/min at the mid of gliding period) irrespective of their size differences. However, a sharp fall in the cell gliding period, gliding cell percentage and speed occurred at various levels (different from cell survival period and percentage) in both diatoms in a similar extent under water stress (2, 4 and 6 % agarized supernatant, liquid supernatant with 0.2–1.0 mol/L NaCl, blot-dryness of cells for 5–15 min), pH extreme of liquid supernatant (≤5.0, ≥9.0), temperature extremes in liquid supernatant (≤15, ≥40 °C), UV exposure (0.96–5.76 kJ/m2), lack of all nutrients from the medium (double distilled water), darkness or low light intensities (2 and 10 µmol m−2 s−1), presence of ‘heavy’ metals (Ni, Cu, Zn, Co, Fe, Hg; 1–200 ppm), organic substances in liquid supernatant (DDT, captan, urea, 2,4-D, 100–2000 ppm; thiourea, 50–1000 ppm).N. palea sway (turn around at either ends) or not only when gliding but independent of cell gliding speed, which decreased continuously under all conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CGP:

cell gliding period

CGS:

cell gliding speed

CSP:

cell survival period

GC%:

gliding cell percentage

References

  • Agrawal S.C., Misra U.: Vegetative survival, akinete and zoosporangium formation and germination in some selected algae as affected by nutrients, pH, metals and pesticides.Folia Microbiol.47, 527–534 (2002).

    Article  CAS  Google Scholar 

  • Agrawal S.C., Pal U.: Viability of dried vegetative cells or filaments, survivability and/or reproduction under water and light stress, and following heat and UV exposure in some blue-green and green algae.Folia Microbiol.48, 501–509 (2003).

    Article  CAS  Google Scholar 

  • Bertrand J.: Mouvements des diatomees. II. Synthese des mouvements.Cryptogamie Algol.13, 49–71 (1992).

    Google Scholar 

  • Blinn D.W.: Growth responses to variations in temperature and specific conductance byChaetoceros muelleri (Bacillariophyceae).Brit.Phycol.J.19, 31–35 (1984).

    Article  Google Scholar 

  • Cepák V., Přibyl P., Vítová M.: The effect of light color on the nucleocytoplasmic and chloroplast cycle of the green chlorococcal algaScenedesmus obliquus.Folia Microbiol.51, 342–347 (2006).

    Article  Google Scholar 

  • Clavero E., Hernandez-Marine M., Grimalt J.O., Garcia-Pichel F.: Salinity tolerance of diatoms from Thalassic hypersaline environments.J.Phycol.36, 1021–1034 (2000).

    Article  Google Scholar 

  • Cohn S.A., Disparti N.C.: Environmental factors influencing diatom cell motility.J.Phycol.30, 818–828 (1994).

    Article  Google Scholar 

  • Davis C.O., Harrison P.J., Dugdale R.C.: Continuous culture of marine diatoms under silicate limitation. I. Synchronized life cycle ofSkeletonema costatum.J.Phycol.9, 175–180 (1973).

    CAS  Google Scholar 

  • De Filippis L.F., Pallaghy C.K.: Heavy metals: sources and biological effects, pp. 31–77 in L.C. Rai, J.P. Gaur, C.J. Soeder (Eds):Algae and Water Pollution. Schweizerbartsche Varlagsbuchhandlung, Stuttgart (Germany) 1994.

    Google Scholar 

  • Drum R.W., Hopkins J.T.: Diatom locomotion: an explanation.Protoplasma62, 1–33 (1966).

    Article  Google Scholar 

  • Fathi A.A.: Toxicological response of the green algaScenedesmus bijuga to mercury and lead.Folia Microbiol.47, 667–671 (2002).

    Article  CAS  Google Scholar 

  • Giri B.S., Chowdhary Y.B.K.: Influence of environmental factors on division rates in diatoms.Phykos31, 143–149 (1992).

    Google Scholar 

  • Gordon R.: A retaliatory role for algal projectiles with implications for the mechanochemistry of diatom gliding motility.J.Theor.Biol.126, 419–436 (1987).

    Article  Google Scholar 

  • Guerrini F., Cangini M., Boni L., Trost P., Pistocchi R.: Metabolic responses of the diatomAchnanthes brevipes (Bacillariophyceae) to nutrient limitation.J.Phycol.36, 882–890 (2000).

    Article  CAS  Google Scholar 

  • Gupta S., Agrawal S.C.: Zoosporangia survival, dehiscence and zoospore formation and motility in the green algaRhizoclonium hieroglyphicum as affected by different factors.Folia Microbiol.49, 549–556 (2004).

    Article  CAS  Google Scholar 

  • Gupta S., Agrawal S.C.: Motility and survival ofEuglena ignobilis as affected by different factors.Folia Microbiol.50, 315–322 (2005).

    Article  CAS  Google Scholar 

  • Gupta S., Agrawal S.C.: Survival of blue-green and green algae under stress conditions.Folia Microbiol.51, 121–128 (2006a).

    Article  CAS  Google Scholar 

  • Gupta S., Agrawal S.C.: Motility inOscillatoria salina as affected by different factors.Folia Microbiol.51, 565–571 (2006b).

    Article  CAS  Google Scholar 

  • Häder D.-P., Häder M.A.: Inhibition of motility and phototaxis in the green flagellateEuglena gracilis by UV-B radiation.Arch. Microbiol.150, 20–25 (1988).

    Article  Google Scholar 

  • Häder D.-P., Häder M.A.: Effects of solar and artificial UV radiation on motility and pigmentation in the marineCryptomonas maculata.Environ.Exp.Bot.31, 33–41 (1991).

    Article  Google Scholar 

  • Harper M.A.: Locomotion of diatoms and ‘clumping’ of blue-green algae.PhD Thesis. University of Bristol (UK) 1967.

  • Harper M.A., Harper J.F.: Measurements of diatom adhesion and their relationship with movement.Brit.Phycol.Bull.3, 195–207 (1967).

    Article  Google Scholar 

  • Hopkins J.T.: A study of diatoms of the Ouse estuary, Sussex. I. The movement of the mud-flat diatoms in response to some chemical and physical changes.J.Mar.Biol.Assoc.UK43, 653–663 (1963).

    Article  Google Scholar 

  • Hopkins J.T.: Diatom motility: its mechanism and diatom behavior patterns in estuarine mud.PhD Thesis. University of London 1969.

  • Knudson B.M.: The ecology of the diatom genusTabellaria in the English lake distriet.J.Ecol.42, 345–355 (1954).

    Article  Google Scholar 

  • Kovačević G., Kalafatić M., Ljubešić N.: Endosymbiotic alga from green hydra under the influence of cinoxacin.Folia Microbiol.50, 205–208 (2005).

    Article  Google Scholar 

  • Lewin J.C., Guillard R.R.L.: Diatoms.Ann.Rev.Microbiol.17, 373–414 (1963).

    Article  CAS  Google Scholar 

  • Millie D.F., Hersh C.M.: Statistical characterizations of the atrazine-induced photosynthetic inhibition ofCyclotella meneghiniana (Bacillariophyta).Aquat.Toxicol.(Amsterdam)10, 239–249 (1987).

    Article  CAS  Google Scholar 

  • Nultsch W.: Phototactic and photokinetic action spectra of the diatomNitzschia communis.Photochem.Photobiol.14, 705–712 (1971).

    Article  CAS  Google Scholar 

  • Oliviera L., Antia N.J.: Nickel ion requirements for autotrophic growth of several marine microalgae with urea serving as nitrogen source.Can.J.Fish Aquat.Sci.43, 2427–2433 (1986).

    Article  Google Scholar 

  • Paterson D.M.: The migratory behavior of diatom assemblages in a laboratory tidal micro-ecosystem examined by low-temperature scanning electron microscopy.Diatom Res.1, 227–239 (1986).

    Google Scholar 

  • Patrick R.: Ecology of fresh water diatom communities, pp. 284–332 in D. Werner (Ed.):Biology of Diatoms. Blackwell, London 1977.

    Google Scholar 

  • Payne C.D., Price N.M.: Effects of cadmium toxicity on growth and elemental composition of marine phytoplankton.J.Phycol.35, 293–302 (1999).

    Article  CAS  Google Scholar 

  • Reimers H.: Über die Thermotaxis niederer Organismen.Jb.Wiss.Bot.67, 242–290 (1928).

    Google Scholar 

  • Round F.E.: The ecology of benthic algae, pp. 138–184 in D.F. Jackson (Ed.):Algae and Man. Plenum Press, New York 1964.

    Google Scholar 

  • Round F.E.: Occurrence and rhythmic behavior ofTropidoneis lepidoptera in the epipelon of Barnstable Harbor, Massachusetts, USA.Mar.Biol.54, 215–217 (1979).

    Article  Google Scholar 

  • Round R.E., Happey C.M.: Persistent vertical migration rhythms in benthic microflora. II. Field and laboratory studies on diatoms from the banks of the river Aron.J.Mar.Biol.Assoc.UK46, 191–214 (1965).

    Google Scholar 

  • Schobert B.: Is there an osmotic regulatory mechanism in algae and higher plants?J.Theor.Biol.68, 17–26 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Schultz M.E., Trainor F.R.: Production of male gametes and auxospores in the centric diatomsCyclotella meneghiniana andCyclotella cryptica.J.Phycol.4, 85–88 (1968).

    Article  Google Scholar 

  • Stokes P.M.: Response of fresh water algae to metals, pp. 87–111 in F.E. Round, V.J. Chapman (Eds):Progress in Phycological Research, Vol. 2, Elsevier Science Publisher, Amsterdam (The Netherlands) 1983.

    Google Scholar 

  • Swanson A.K., Druehl L.D.: Differential meiospore size and tolerance of ultraviolet light stress within and among kelp species along a depth gradient.Mar.Biol.136, 657–664 (2000).

    Article  Google Scholar 

  • Taraldsvik M., Myklestad S.M.: The effect of pH on growth rate, biochemical composition and extracellular carbohydrate production of the marine diatomSkeletonema costatum.Eur.J.Phycol.35, 189–194 (2000).

    Article  Google Scholar 

  • Übeleis I.: Osmotischer Wert, Zucker-und-Harnstoff-Permeabilität einiger Diatomeen.Österr.Akad.Wiss.Math.-Naturwiss.Kl.Sitzber.Abt.I.166, 395–433 (1957).

    Google Scholar 

  • Van Bergeijk S.A., Zee C.V.D., Stal L.J.: Uptake and excretion of dimethylsulphoniopropionate is driven by salinity changes in the marine benthic diatomCylindrotheca closterium.Eur.J.Phycol.38, 341–349 (2003).

    Article  CAS  Google Scholar 

  • Venugopal V., Prasanna R., Sood A., Jaiswal P., Kaushik B.D.: Stimulation of pigment accumulation inAnabaena azollae strains: effect of light intensity and sugars.Folia Microbiol.51, 50–56 (2006).

    Article  CAS  Google Scholar 

  • Von Denffer D.: Die planktische Massenkultur pennater Grunddiatomeen.Arch.Mikrobiol.14, 159–202 (1949).

    Article  Google Scholar 

  • Von Stosch H.A., Fecher K.: ‘Internal thecae’ ofEunotia soleirolii (Bacillariophyceae). Development, structure and function as resting spores.J.Phycol.15, 233–243 (1979).

    Article  Google Scholar 

  • Wagner J.: Beitrage zur Kenntnis derNitzschia putrida Benecke, insbesondere ihrer Bewegung.Arch.Protistenk.82, 86–113 (1934).

    Google Scholar 

  • Wei S.F., Hwang S.-P.L., Chang J.: Influence of ultraviolet radiation on the expression of proliferating cell nuclear antigen and DNA polymerase α inSkeletonema costatum (Bacillariophyceae).J.Phycol.40, 655–663 (2004).

    Article  CAS  Google Scholar 

  • Wiencke C., Gomez I., Pakker H., Flores-Moya A., Alta-Mirano M., Hanelt D., Bischof K., Figueroa F.L.: Impact of UV-radiation on viability, photosynthetic characteristic and DNA of brown algal zoospore: implications for depth zonation.Mar.Ecol.Progr.Ser.197, 217–229 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Agrawal, S.C. Survival and motility of diatomsNavicula grimmei andNitzschia palea affected by some physical and chemical factors. Folia Microbiol 52, 127–134 (2007). https://doi.org/10.1007/BF02932151

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932151

Keywords

Navigation