Skip to main content
Log in

Decreased susceptibility to antifungals in respiratory-deficientKluyveromyces lactis mutants

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Decreased susceptibility ofK. lactis mutants impaired in the function of cytochromec, cytochromec 1 and cytochrome-c oxidase to fluconazole, bifonazole and amphotericin B in comparison with the isogenic wild-type strain was observed. Flow cytometry with rhodamine 6G did not show any changes in the accumulation of the dye in the mutant cells compared with the corresponding wild-type strain. Sterol analysis showed similar overall amount of sterols in both wild-type and mutant cells. Taking into account the increased amphotericin B resistance and significantly diminished susceptibility of mutant cells to lyticase digestion, the cell wall structure and/or composition may probably be responsible for the observed changes in the susceptibility of mutants to the antifungal compounds used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMB:

amphotericin B

BIF:

bifonazole

FACS:

fluorescence-activated cell sorter

YNB:

yeast nitrogen base (medium)

YPD:

yeast extract-peptone dextrose

ITR:

itraconazole

FLC:

fluconazole

NYS:

nystatin

R6G:

rhodamine 6G

GC:

gas chromatography

YNB MM:

YNB minimal medium

References

  • Agarwal A.K., Rogers P.D., Baerson S.R., Jacob M.R., Barker K.S., Cleary J.D., Walker L.A., Nagle D.G., Clark A.M.: Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents inSaccharomyces cerevisiae.J.Biol.Chem. 12, 34998–35015 (2003).

    Article  CAS  Google Scholar 

  • Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K.:Current Protocols in Molecular Biology. John Wiley & Sons, New York 1989.

    Google Scholar 

  • Bahmed K., Bonaly R., Coulon J.: Relation between cell wall chitin content and susceptibility to amphotericin B inKluyveromyces, Candida andSchizosaccharomyces species.Res.Microbiol. 154, 215–222 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Balzi E., Chen W., Ulaszewski S., Capieaux E., Goffeau A.: The multidrug resistance genePDR1 fromSaccharomyces cerevisiae.J.Biol.Chem. 262, 16871–16879 (1987).

    PubMed  CAS  Google Scholar 

  • Baysal B.E., Ferrel R.E., Willet-Brozick J.E., Lawrence E.C., Myssiorek D., Bosch A., van der Mey A., Taschner P.E., Rubinstein W.S., Myers E.N., Richard C.W. 3rd,Cornelisse C.J., Devilee P., Devlin B.: Mutations inSDHD, a mitochondrial complex II gene in hereditary paraglioma.Science 287, 848–851 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Bialková A., Šubík J.: Biology of the pathogenic yeastCandida glabrata.Folia Microbiol. 51, 3–20 (2006).

    Article  Google Scholar 

  • Brun S., Aubry C., Lima O., Filmon R., Berges T., Chabasse D., Bouchara J.P.: Relationship between respiration and susceptibility to azole antifungals inCandida glabrata.Antimicrob.Agents Chemother. 47, 847–853 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Brun S., Berges T., Poupard P., Vauzelle-Moreau C., Renier G., Chabasse D., Bouchara J.P.: Mechanisms of azole resistance in petite mutants ofCandida glabrata.Antimicrob.Agents Chemother. 48, 1788–1796 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Butow R.A., Avadhani N.G.: Mitochondrial signaling: the retrograde response.Mol.Cell. 14, 1–15 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Chen X.J., Wesolowski-Louvel M., Fukuhara H.: Glucose transport in the yeastKluyveromyces lactis. II. Transcriptional regulation of the glucose transporter geneRAG1.Mol.Gen.Genet. 233, 97–105 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Cortopassi G.A., Wong A.: Mitochondria in organismal aging and degeneration.Biochim.Biophys.Acta 1410, 183–193 (1999).

    Article  PubMed  CAS  Google Scholar 

  • De Nobel J.G., Klis F.M., Priem J., Munnik T., van den Ende H.: The glucanase-soluble mannoproteins limit cell wall porosity inSaccharomyces cerevisiae.Yeast 6, 491–499 (1990).

    Article  PubMed  Google Scholar 

  • Defontaine A., Bouchara J.P., Declerk P., Planchenault C., Chabasse D., Hallet J.N.:In vitro resistance to azoles associated with mitochondrial DNA deficiency inCanadida glabrata.J.Med.Microbiol. 48, 663–670 (1999).

    PubMed  CAS  Google Scholar 

  • Delahodde A., Delaveau T., Jacq C.: Positive autoregulation of the yeast transcription factor Pdr3p, which is involved in control of drug resistance.Mol.Cell.Biol. 15, 4043–4051 (1995).

    PubMed  CAS  Google Scholar 

  • Delaveau T., Jacq C., Perea J.: Sequence of a 12.7-kb segment of yeast chromosome II identifies aPDR-like gene and several new open reading frames.Yeast 8, 761–768 (1992).

    Article  PubMed  CAS  Google Scholar 

  • DeRisi J., van den Hazel B., Marc P., Balzi E., Brown P., Jacq C., Goffeau A.: Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants.FEBS Lett. 470, 156–160 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Devaux F., Carvajal E., Moye-Rowley S., Jacq C.: Genome-wide studies on the nuclearPDR3-controlled response to mitochondrial dysfunction in yeast.FEBS Lett. 515, 25–28 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Džugasová V., Šubík J.: Synthetic lethal interaction between thepel1 andop1 mutations inSaccharomyces cerevisiae.Folia Microbiol. 50, 293–299 (2005).

    Article  Google Scholar 

  • Epstein C.B., Waddle J.A., Hale W. 4th,Dav V., Thornton J., Macatee T.L., Garner H.R., Butow R.A.: Genome-wide responses to mitochondrial dysfunction.Mol.Biol.Cell 12, 297–308 (2001).

    PubMed  CAS  Google Scholar 

  • Evans I.H., Diala E.S., Earl A., Wilkie D.: Mitochondrial control of cell surface characteristics inSaccharomyces cerevisiae.Biochim.Biophys.Acta 602, 201–206 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Gbelská Y., Horváthová K., van der Aart Q.J.M., Zonneveld B.J.M., Steensma H.Y., Šubík J.: Isolation and molecular analysis of the gene for cytochromec 1 fromKluyveromyces lactis.Curr.Genet. 30, 145–150 (1996).

    Article  PubMed  Google Scholar 

  • Green D.R., Reed J.C.: Mitochondria and apoptosis.Science 281, 1309–1312 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Hallstrom T.C., Moye-Rowley S.W.: Multiple signals from dysfunctional mitochondria activate the pleiotropic drug resistance pathway inSaccharomyces cerevisiae.J.Biol.Chem. 275, 37347–37356 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Hapala I., Klobučníková V., Mazáňová K., Kohút P.: Two mutants selectively resistant to polyenes reveal distinct mechanisms of antifungal activity by nystatin and amphotericin B.Biochem.Soc.Trans. 33, 1206–1209 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Henry K.W., Nickels J.T., Edlind T.D.: Upregulation ofERG genes inCandida species by azoles and other sterol biosynthesis inhibitors.Antimicrob.Agents Chemother. 44, 2693–2700 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Heus J.J., Zonneveld B.J.M., Steensma H.Y., van den Berg J.A.: Centromeric DNA ofKluyveromyces lactis.Curr.Genet. 18, 517–522 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Hikkel I., Gbelská Y., van der Aart Q.J.M., Lubec G., Šubík J.: Cloning and characterization ofKICOX18, a gene required for activity of cytochrome-c oxidase inKluyveromyces lactis.Curr.Genet. 32, 267–272 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Iung A.R., Coulon J., Kiss F., Ekome J.N., Vallner J., Bonaly R.: Mitochondrial function in cell wall glycoprotein synthesis inSaccharomyces cerevisiae NCYC 625 (wild type) and [ρ0] mutants.Appl.Environ.Microbiol. 65, 5398–5402 (1999).

    PubMed  CAS  Google Scholar 

  • Jia Y., Rothermel B., Thornton J., Butow R.A.: A basic helix-loop-helix zipper transcription complex functions in a signaling pathway from mitochondria to the nucleus.Mol.Cell.Biol. 17, 1110–1117 (1997).

    PubMed  CAS  Google Scholar 

  • Kaur R., Castano I., Cormack B.P.: Functional genomic analysis of fluconazole susceptibility in the pathogenic yeastCandida glabrata: roles of calcium signaling and mitochondria.Antimicrob.Agents Chemother. 48, 1600–1613 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kelly S.L., Lamb D.C., Kelly D.E., Manning N.J., Loeffler J., Hebart H., Schumacher U., Einsele H.: Resistance to fluconazole and cross-resistance to amphotericin B inCandida albicans from AIDS patients caused by defective sterol Δ5,6-desaturation.FEBS Lett. 400, 80–82 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kelly S.L., Lamb D.C., Kelly D.E.: Y132H substitution inCandida albicans sterol 14α-demethylase confers fluconazole resistance by preventing binding to haem.FEMS Microbiol.Lett. 180, 171–175 (1999).

    PubMed  CAS  Google Scholar 

  • Kolaczkowski M., van der Rest M., Cybularz-Kolaczkowska A., Soumillion J.P., Konings W.N., Goffeau A.: Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p.J.Biol.Chem. 271, 31543–31548 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Kontoyiannis D.P.: Modulation of fluconazole sensitivity by the interaction of mitochondria and Erg3p inSaccharomyces cerevisiae.J.Antimicrob.Chemother. 46, 191–197 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Lees N.D., Bard M., Kirsch D.R.: Biochemistry and molecular biology of sterol synthesis inSaccharomyces cerevisiae.Crit.Rev.Biochem.Mol.Biol. 34, 33–47 (1999).

    PubMed  CAS  Google Scholar 

  • Liao X., Butow R.A.:RTG1 andRTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus.Cell 72, 61–71 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Lussier M., White A.M., Sheraton J., di Paolo T., Treadwell J., Southard S.B., Horenstein C.I., Chen-Weiner J., Ram A.F.J., Kapteyn J.C., Roemer T.W., Vo D.H., Bondoc D.C., Hall J., Zhong W.W., Sdicu A.M., Davies J., Klis F.M., Robbins P.W., Bussey H.: Large scale identification of genes involved in cell surface biosynthesis and architecture inSaccharomyces cerevisiae.Genetics 147, 435–450 (1997).

    PubMed  CAS  Google Scholar 

  • Miyazaki H., Miyazaki Y., Geber A., Parkinson T., Hitchcock C., Falconer D., Ward J., Marsden K., Bennett J.E.: Fluconazole resistance associated with drug efflux and increased transcription of a drug transporter gene,PHD1, inCandida glabrata.Antimicrob.Agents Chemother. 42, 1695–1701 (1998).

    PubMed  CAS  Google Scholar 

  • Moye-Rowley W.S.: Retrograde regulation of multidrug resistance inSaccharomyces cerevisiae.Gene 354, 15–21 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Prasad R., De Wergifosse P., Goffeau A., Balzi E.: Molecular cloning and characterization of a novel gene ofCandida albicans, CDR1, conferring multiple resistance to drugs and antifungals.Curr.Genet. 27, 320–329 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Ramanandraibe E., Younsi M., Coulon J., Loppinet V., Hakkou A., Bonaly R.: Implication of cell wall constituents in the sensitivity ofKluyveromyces lactis strains to amphotericin B.Res.Microbiol. 149, 109–118 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Sanglard D., Ischer F., Monod M., Bille J.: Cloning ofCandida albicans genes conferring resistance to azole antifungal agents: characterization ofCDR2, a new multidrugABC transporter gene.Microbiology 143, 405–416 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Sanglard D., Ischer F., Calbrese D., Majcherczyk P.A., Bille J.: Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals inCandida glabrata.Antimicrob.Agents Chemother. 45, 1174–1183 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Sardari S., Mori Y., Kurosawa T., Daneshtalab M.: Modulatory effect of cAMP on fungal ergosterol level and inhibitory activity of azole drugs.Can.J.Microbiol. 49, 344–349 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Šarinová M., Tichá E., Obernauerová M., Gbelská Y.: Impact of mitochondrial function on yeast susceptibility to antifungal compounds.Folia Microbiol. 52, 223–229 (2007).

    Article  Google Scholar 

  • Seo K., Akiyoshi H., Ohnishi Y.: Alterations of cell wall composition leads to amphotericin B resistance inAspergillus flavus.Microbiol.Immunol. 43, 1017–1025 (1999).

    PubMed  CAS  Google Scholar 

  • Takáčová M., Sklenár P., Gbelská Y., Breunig K.D., Šubík J.: Isolation, heterological cloning and sequencing of theRPL28 gene inKluyveromycers lactis.Curr.Genet. 42, 21–26 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Traven A., Wong J.M.S., Xu D., Sopta M., Ingles J.: Interorganellar communication. Altered nuclear gene expression profiles in a yeast mitochondrial DNA mutant.J.Biol.Chem. 276, 4020–4027 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Tsai H.-F., Krol A.A., Sarti K.E., Bennet J.E.:Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates andpetite mutants.Antimicrob.Agents Chemother. 50, 1384–1392 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Van den Bossche H., Marichal P., Gorrens J., Bellens D., Moereels H., Janssen P.A.: Mutation in cytochrome P-450 dependent 14α-demethylase results in decreased affinity for azole antifungals.Biochem.Soc.Trans. 18, 56–59 (1990).

    Google Scholar 

  • Van Den Hazel H.B., Pichler H., do Valle Matta M.A., Leitner E., Goffeau A., Daum G.:PDR16 andPDR17, two homologous genes ofSaccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs.J.Biol.Chem. 274, 1934–1941 (1999).

    Article  PubMed  Google Scholar 

  • Wallace D.C.: Mitochondrial diseases in man and mouse.Science 283, 1482–1488 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y., Aoyama Y.: Interaction of azole antifungal agents with cytochrome P-450 14DM purified fromSaccharomyces cerevisiae microsomes.Biochem.Pharmacol. 36, 229–235 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Zhang X., Moye-Rowley W.S.:Saccharomyces cerevisiae multidrug resistance gene expression inversely correlates with the status of the FO component of the mitochondrial ATPase.J.Biol.Chem. 276, 47844–47852 (2001).

    PubMed  CAS  Google Scholar 

  • Zhang X., Kolaczkowska A., Devaux F., Panwar S.L., Halstrom T.C., Jacq C., Moye-Rowley W.S.: Transcriptional regulation by Lge1p requires a function independent of its role in H2B ubiquitination.J.Biol.Chem. 280, 2759–2770 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gbelská.

Additional information

This work was supported by grant no. 1/2338/05 from theSlovak Grant Agency of Science VEGA and grants of theComenius University in Bratislava UK/129/07 and UK/145/07.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šarinová, M., Straková, V., Balková, K. et al. Decreased susceptibility to antifungals in respiratory-deficientKluyveromyces lactis mutants. Folia Microbiol 52, 484–490 (2007). https://doi.org/10.1007/BF02932108

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932108

Keywords

Navigation