Skip to main content
Log in

Proteomics-driven identification of putative AfsR2-target proteins stimulating antibiotic biosynthesis inStreptomyces lividans

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

AfsR2, originally identified fromStreptomyces lividans, is a global regulatory protein which stimulates antibiotic biosynthesis. Through its stable chromosomal integration, the high level of gene expression ofafsR2 significantly induced antibiotic production as well as the sporulation ofS. lividans, implying the presence of yet-uncharacterized AfsR2-target proteins. To identify and evaluate the putative AfsR2-target proteins involved in antibiotic regulation, the proteomics-driven approach was applied to the wild-typeS. lividans and theafsR2-integrated actinorhodin overproducing strain. The 2D gel-electrophoresis gave approximately 340 protein spots showing different protein expression patterns between these twoS. lividans strains. Further MALDI-TOF analysis revealed several AfsR2-target proteins, including glyceraldehyde-3-phosphate dehydrogenase, putative phosphate transport system regulator, guanosine pentaphosphate synthetase/polyribonucleotide nucleotidyltransferase, and superoxide dismutase, which suggests that the AfsR2 should be a pleiotropic regulatory protein which controls differential expressions of various kinds of genes inStreptomyces species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chater, K. F. (1990) Multilevel regulation ofStreptomyces differentiation.Trends Genet. 5: 372–377.

    Article  Google Scholar 

  2. Hopwood, D. A. (1987) Towards an understanding of gene switching inStreptomyces, the basis of sporulation and antibiotic production.Proc. R. Soc. Lond. Series B. 235: 2257–2269.

    Google Scholar 

  3. Nakamura Y., C. Asada, and T. Sawada (2004) Production of antibacterial violet pigment by psychrotropic bacterium RT102 strain.Biocechnol. Bioprocess Eng. 8: 37–40.

    Article  Google Scholar 

  4. Champness, W. C. and K. F. Chater (1994) Regulation and integration of antibiotic production and morphological differentiation inStreptomyces spp. pp. 61–93. In: P. J. Piggot, C. P. Moran Jr., and P. Youngman (eds.),Regulation of Bacterial Differentiation. American Society for Microbiology, Washington D.C., USA.

    Google Scholar 

  5. Kim J. H., J. S. Lim, and S. W. Kim (2004) The improvement of cephalosporin C production by fed-batch culture ofCephalosporium acremonium M25 using rice oil.Biotechnol. Bioprocess Eng. 9: 459–464.

    Article  CAS  Google Scholar 

  6. Lee, K. J. and J. Y. Lim (2004) Optimized conditions for high erythritol production byPenicillium sp. KJ-UV29, mutant ofPenicillium sp. KJ81.Biocechnol. Bioprocess Eng. 8: 173–178.

    Article  Google Scholar 

  7. Champness, W. C., P. Riggle, T. Adamidis, B. Kenney, and D. Aceti (1993) Genetic elements involved in global antibiotic regulation inStreptomyces coelicolor. pp. 227–233. In: R. Baltzet al. (eds.).Industrial Microorganisms: Basic and Applied Molecular Genetics. American Society for Microbiology, Washington D.C., USA.

    Google Scholar 

  8. Hara, O., S. Horinouchi, T. Uozumi, and T. Beppu (1983) Genetic analysis of A-factor synthesis inStreptomyces coelicolor A3(2) andStreptomyces griseus.J. Gen. Microbiol. 129: 2939–2944.

    CAS  Google Scholar 

  9. Horinouchi, S., O. Hara, and T. Beppu (1983) Cloning of a pleiotropic gene that positively controls biosynthesis of A-factor actinorhodin, and prodigiosin inStreptomyces coelicolor A3(2) andStreptomyces lividans.J. Bacteriol. 155: 1238–1248.

    CAS  Google Scholar 

  10. Horinouchi, S., M. Kito, M. Nishiyama, K. Furuya, S. K. Hong, K. Miyake, and T. Beppu (1992) Primary structure of AfsR, a global regulatory protein for secondary metabolite formation inStreptomyces coelicolor A3(2).Gene 95: 49–56.

    Article  Google Scholar 

  11. Stein, D. and S. N. Cohen (1989) A cloned regulatory gene ofStreptomyces lividans can suppress the pigment deficiency phenotype of different development mutants.J. Bacteriol. 171: 2258–2261.

    CAS  Google Scholar 

  12. Vogtli, M., P. C. Chang, and S. N. Cohen (1994)afsR2: A previously undeleted gene encoding a 63-amino-acid protein that stimulates antibiotic production inStreptomyces lividans.Mol. Microbiol. 14: 643–653.

    Article  CAS  Google Scholar 

  13. Matsumoto, A., H. Ishizukz, T. Beppu, and S. Horinouchi (1995) Involvement of a small ORF downstream of theafsR gene in the regulation of secondary metabolism inStreptomyces coelicolor A3(2).Actinomycetologica. 9: 37–43.

    Article  Google Scholar 

  14. Kim, E. S., H.-J. Hong, C.-Y. Choi, and S. N. Cohen (2001) Modulation of actinorhodin biosynthesis inStreptomyces lividans by glucose repression ofafsR2 gene transcription.J. Bacteriol. 183: 2198–2203.

    Article  CAS  Google Scholar 

  15. Kim, C.-Y., H.-J. Park, Y. J. Yoon, H.-Y. Kang, and E.-S. Kim (2004) Stimulation of actinorhodin production byStreptomyces lividans with a chromosomally-integrated antibiotic regulatory geneafsR2.J. Microbiol. Biotechnol. 14: 1089–1092.

    CAS  Google Scholar 

  16. Oakley, B. R., D. R. Kirsch, and N. R. Morris (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels.Anal. Biochem. 105: 361–363.

    Article  CAS  Google Scholar 

  17. Shevchenko, A., M. Wilm, O. Vorm, and M. Mann (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide dels.Anal. Chem. 68: 850–858.

    Article  CAS  Google Scholar 

  18. Kormanec, J., A. Lempel’ova, R. Novakova, B. Rezuchova, and D. Homerova (1997) Expression of theStreptomyces aureofaciens glyceraldehyde-3-phosphate dehydrogenase gene (gap) is developmentally regulated and induced by glucose.Microbiology 143: 3555–3561.

    Article  CAS  Google Scholar 

  19. Sprusansky, O., B. Rezuchova, D. Homerova, and J. Kormanec (2001) Expression of the gap gene encoding glyceraldehyde-3-phosphate dehydrogenase ofStreptomyces aureofaciens requires GapR, a member of the AraC/XylS family of transcriptional activators.Microbiology 147: 1291–1301.

    CAS  Google Scholar 

  20. Umeyama, T., A. Naruoka, and S. Horinouchi (2000) Genetic and biochemical characterization of a protein phosphatase with dual substrate specificity inStreptomyces coelicolor A3(2).Gene 258: 55–62.

    Article  CAS  Google Scholar 

  21. Vomastek, T., R. Nadvornik, J. Janecek, Z. Technikova, J. Weiser, and P. Branny (1998) Characterisation of two putative protein Ser/Thr kinases from actinomyceteStreptomyces granaticolor both endowed with different properties.Eur. J. Biochem. 257: 55–61.

    Article  CAS  Google Scholar 

  22. Chung, H. J., J. H. Choi, E. J. Kim, Y. H. Cho, and J. H. Roe (1999) Negative regulation of the gene for Fe-containing superoxide dismutase by an Ni-responsive factor inStreptomyces coelicolor.J. Bacteriol. 181: 7381–7384.

    CAS  Google Scholar 

  23. Folcher, M., H. Gaillard, L. T. Nguyen, K. T. Nguyen, P. Lacroix, N. Bamas-Jacques, M. Rinkel, and C. J. Thompson (2001) Pleiotropic functions of aStreptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase.J. Biol. Chem. 276: 44297–44306.

    Article  CAS  Google Scholar 

  24. Yoon, Y. J., B. J. Beck, B. S. Kim, H.-Y. Kang, and K. A. Reynolds (2002) Generation of multiple bioactive macrolides by hybrid modular polyketide synthases inStreptomyces venezuelae.Chem. Biol. 9: 203–214.

    Article  CAS  Google Scholar 

  25. Cashel, M., D. R. Gentry, V. J. Hernandez, and D. Vinella (1996) The stringent response. pp. 1458–1496. In: R. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Rezniko, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), Escherichia coliand Salmonella typhimurium:Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C., USA.

    Google Scholar 

  26. Martinez-Costa, O. H., P. Arias, N. M. Romero, V. Parro, R. P. Mellado, and F. Malpartida (1996) ArelA/spoT homologous gene fromStreptomyces coelicolor A3(2) controls antibiotic biosynthetic genes.J. Biol. Chem. 271: 10627–10634.

    Article  CAS  Google Scholar 

  27. Chakraburtty, R. and M. Bibb (1997) The ppGpp synthetase gene (relA) ofStreptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation.J. Bacteriol. 179: 5854–5861.

    CAS  Google Scholar 

  28. Glass, R. E., S. T. Jones, and A. Ishihama (1986) Genetic studies on the β subunit ofEscherichia coli RNA polymerase. VII. RNA polymerase is a target for ppGpp.Mol. Gen. Genet. 203: 265–268.

    Article  CAS  Google Scholar 

  29. Ochi, K. (1987) Metabolic initiation of differentiation and secondary metabolism byStreptomyces griseus: Significance of the stringent response (ppGpp) and GTP content in relation to A factor.J. Bacteriol. 169: 3608–3616.

    CAS  Google Scholar 

  30. Kelly, K. S., K. Ochi, and G. H. Jones (1991) Pleiotropic effects of arelC mutation inStreptomyces antibioticus.J. Bacteriol. 173: 2297–2300.

    CAS  Google Scholar 

  31. Sohlberg B., J. Huang, and S. N. Cohen (2003) TheStreptomyces coelicolor polynucleotide phosphorylase homologue, and not the putative poly(A) polymerase, can polyadenylate RNA.J. Bacteriol. 185: 7273–7278.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eung-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, CY., Park, HJ. & Kim, ES. Proteomics-driven identification of putative AfsR2-target proteins stimulating antibiotic biosynthesis inStreptomyces lividans . Biotechnol. Bioprocess Eng. 10, 248–253 (2005). https://doi.org/10.1007/BF02932021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932021

Key words

Navigation