Skip to main content
Log in

Direct triazine herbicide detection using a self-assembled photosynthetic reaction center from purple bacterium

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, a direct detection system for triazine derivative herbicides was developed using the photosynthetic reaction center (RC) from the purple bacterium,Rhodobacter sphaeroides, and surface plasmon resonance (SPR) apparatus. The histidine-tagged RCs were immobilized on an SPR gold chip using nickel-nitrilotriacetic acid groups as a binder for one of the triazine herbicide, atrazine. The SPR responses were proportional to the sample concentrations of atrazine in the range 0.1–1 μg/mL. The sensitivity of the direct detection of atrazine using the RC-assembled sensor chip was higher than that using the antibody-immobilized chip. The other types of herbicides, DCMU or MCPP, were not detected with such high sensitivity. The results indicated the high binding selectivity of the RC complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCMU:

N'-(3,4-Dichlorophenyl)-N,N-dimethylurea

ELISA:

Enzyme-linked immunosorbent assay

HHisRC:

Heavy-subunit-histidine-tagged RC

IgG:

Immunoglobulin G

MCPP:

2-(2-Methyl-4-chlorophenoxy) propionic acid

Ni-NTA:

Nickel-nitrilotriacetic acid

PSII:

Photosystem II

QB :

Secondary quinone of PSII or RC

RC:

Photosynthetic reaction center

SPR:

Surface plasmon resonance

References

  1. Taets, C., S. Aref, and A. L. Rayburn (1998) The clastegenic potential of triazine herbicide combinations found in potable water supplies.Environ. Health Perspect. 106: 197–201.

    Article  CAS  Google Scholar 

  2. Sathiakumar, N. and E. Delzell (1997) A review of epidemic studies of triazine herbicides and cancer,Crit. Rev. Toxicol. 27: 599–612.

    Article  CAS  Google Scholar 

  3. Van Leeuwen, J. A., D. Waltner-Toews, T. Abernathy, B. Smit, and M. Shoukri (1999) Associations between stomach cancer incidence and drinking water contamination with atrazine and nitrate in Ontario (Canada) agroecosystems, 1987–1991.Int. J. Epidemiol. 28: 836–840.

    Article  Google Scholar 

  4. Cooper, R. L., T. E. Stoker, L. Tyrey, J. M. Goldman, and W. K. McElroy (2000) Atrazine disrupts the hypothalamic control of pituitary-ovarian function.Toxicol. Sci. 53: 297–307.

    Article  CAS  Google Scholar 

  5. Schlaeppi, J.-M., W. Fory, and K. Ramsteiner (1989) Hydroxyatrazine and atrazine determination in soil and water by enzyme-linked immunosorbent assay using specific monoclonal antibodies.J. Agric. Food Chem. 37: 1532–1538.

    Article  CAS  Google Scholar 

  6. Thurman, E. M., M. Meyer, M. Pomes, C. A. Perry, and A. P. Schwab (1990) Enzyme-linked immunosorbent assay compared with gas chromatography/mass spectrometry for the determination of triazine herbicides in water.Anal. Chem. 62: 2043–2048.

    Article  CAS  Google Scholar 

  7. Bushway, R. J., L. B. Perkins, and H. L. Hurst (1992) Determination of atrazine in milk by immunoassay.Food Chem. 43: 283–287.

    Article  CAS  Google Scholar 

  8. Schneider, P., and B. D. Hammock (1992) Influence of the ELISA format and the hapten-enzyme conjugate on the sensitivity of an immunoassay fors-triazine herbicides using monoclonal antibodies.J. Agric. Food Chem. 40: 525–530.

    Article  CAS  Google Scholar 

  9. Bier, E. F., W. Stocklein, M. Bocher, U. Bilitewski, and R. D. Schmid (1992) Use of a fibre optic immunosensor for the detection of pesticides.Seusors Actuators B 7: 509–512.

    Article  Google Scholar 

  10. Yokoyama, K., K. Ikebukuro, E. Tamiya, I. Karube, N. Ichiki, and Y. Arikawa (1995) Highly sensitive quartz crystal immunosensors for multisample detection of herbicides.Anal. Chim. Acta 304: 139–145.

    Article  CAS  Google Scholar 

  11. Sasaki, S., R. Nagata, B. Hock, and I. Karube (1998) Novel surface plasmon resonance sensor chip functionalized with organic silica compounds for antibody attachment.Anal. Chim. Acta 368: 71–76.

    Article  CAS  Google Scholar 

  12. Draber, W., K. Tietjen, J. E. Kluth, and A. Trebst (1991) Herbicides in photosynthesis research.Angew. Chem. 3: 1621–1633.

    Google Scholar 

  13. Piletskaya, E., S. Piletsky, N. Lavrik, Y. Masuchi, and I. Karube (1998) Toward the D1 protein application for the development of sensors specific for herbicides.Anal. Lett. 31: 2577–2589.

    CAS  Google Scholar 

  14. Piletskaya, E. V., S. A. E'skaya, A. A. Sozinov, J.-L. Marty, and R. Roulillon (1999) D1 protein-an effective substitute for immunoglobulins in ELISA for the detection of photosynthesis inhibiting herbicides.Anal. Chim. Acta 398: 49–56.

    Article  CAS  Google Scholar 

  15. Koblizek, M., J. Masojidek, J. Komenda, T. Kucera, R. Piloton, A. K. Mattoo, and M. Giardi (1998) A sensitive photosystem II-based biosensor for detection of a class of herbicide.Biotechnol. Bioeng. 60: 664–669.

    Article  CAS  Google Scholar 

  16. Piletskaya, E. V., S. A. Piletsky, T. A. Sergeyava, A. V. El'skaya, A. A. Sozinov, J.-L. Marty, and R. Rouillon (1999) Thylakoid membranes-based test-system for detecting of trace quantities of the photosynthesis-inhibiting herbicides in drinking water.Anal. Chim. Acta 391: 1–7.

    Article  CAS  Google Scholar 

  17. Mathis, P. (1990) Compared structure of plant and bacterial photosynthetic reaction centers. Evolutionary implications.Biochim. Biophys. Acta 1018: 163–167.

    Article  CAS  Google Scholar 

  18. Lancaster, C. R. D. and H. Michel (1999) Refined crystal structures of reaction centers fromRhodopseudomonas viridis in complexes with the herbicide atrazine and two chiral atrazine derivatives also lead to a new model of the bound carotenoid.J. Mol Biol. 286: 883–898.

    Article  CAS  Google Scholar 

  19. Okamura, M. Y. (1984) On the herbicide binding site in bacterial reaction centers. pp. 381–390 In: R. B. Hallick, A. Staehelin, and J. P. Thornber (eds.),Biosynthesis of the Photosynthetic Apparatus: Molecular Biology, Development and Regulation. Alan R. Liss Inc., New York, USA.

    Google Scholar 

  20. Hirata, Y., K. Nukanobu, M. Hara, Y. Asada, J. Miyake, and M. Fujihira (1992) Freparation of stable Langmuir-Blodgett films of photosynthetic bacterial reaction center fromRhodopseudomonas viridis using poly-L-lysine.Chem. Lett. 2277–2280.

  21. Yasuda, Y., Y. Hirata, H. Sugio, M. Kumei, M. Hara, J. Miyake, and M. Fujihira (1992) Langmuir-Blodgett films of reaction centers ofRhodopseudomonas viridis: photoelectric characteristics,Thin Solid Films 210/211: 733–735.

    Article  Google Scholar 

  22. Yasuda, Y., H. Sugio, H. Toyotama, Y. Hirata, M. Hara, and J. Miyake (1994) Control of protein orientation in molecular photoelectric devices using Langmuir-Blodgett films of photosynthetic reaction centers fromRhodopseudomonas viridis.Bioelectrochem. Bioenergetics 34: 135–139.

    Article  CAS  Google Scholar 

  23. Sockett, R. E., T. J. Donohue, A. R. Varga, and S. Kaplan (1989) Control of photosynthetic membrane assembly inRhodobacter sphaeroides mediated bypuh A and flanking sequences.J. Bacteriol. 171: 436–446.

    CAS  Google Scholar 

  24. Nakamura, C., T. Kaneko, M. Hasegawa, Q. Yang, M. Hara, M. Shirai, and J. Miyake (1998) Synthesis of photosynthetic reaction centers with poly-His-tagged heavy subunit as a scaffold for self-fabrication. pp. 3037–3090. In: G. Garab (ed.).Photosynthesis: Mechanisms and Effects. Vol. 4, Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  25. Nakamura, C., M. Hasegawa, Y. Yasuda, and J. Miyake (2000) Self-assembling photosynthetic reaction centers on electrodes for current generation.Appl. Biochem. Biotechnol. 84–86: 401–408.

    Article  Google Scholar 

  26. Goldsmith, J. O. and S. G. Boxer (1996) Rapid isolation of bacterial photosynthetic reaction centers with an engineered poly-histidine tag,Biochim. Biophys. Acta 1276: 171–175.

    Article  Google Scholar 

  27. Stenberg, E., B. Persson, H. Roos, and C. Urbaniczky (1991) Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabelled proteins.J. Colloid Interface Sci. 143: 513–526.

    Article  CAS  Google Scholar 

  28. Karlsson, R. and R. Stahlberg (1995) Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecularweight analytes and for determination of low affinities.Anal. Biochem. 228: 274–280.

    Article  CAS  Google Scholar 

  29. Jockers, R. and R. D. Schmid (1993) Detection of herbicides via a bacterial photoreaction centre and bacterial luciferase.Biosensors Bioelectronics 8: 281–289.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikashi Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, C., Hasegawa, M., Shimada, K. et al. Direct triazine herbicide detection using a self-assembled photosynthetic reaction center from purple bacterium. Biotechnol. Bioprocess Eng. 5, 413–417 (2000). https://doi.org/10.1007/BF02931940

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931940

Keywords

Navigation