Skip to main content
Log in

Multiple-end-point bioassays using microorganisms

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Since the 1950s, the numbers of species and chemicals produced have significantly increased. Despite the fact that industrial chemicals have given us numerous benefits, there is no doubt that they have damaged the environment. The chemicals being dispersed on the earth should be carefully controlled to prevent adverse effects. Bioassay is one of the methods to assess chemical safety. In bioassay systems, chemical safety is estimated by monitoring biological responses to environmental pollutants and newly synthesized chemicals. This report introduces multiple-end-point bioassay systems that are based on chemical sensitivities of microorganisms, responses of one kind of organism, and micro-array technology. Multiple-end-point bioassays enable the prediction of chemicals in the environment and the understanding of toxicities of newly synthesized chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suzuki, M., and H. Utsumi (1998) Bioassay for the control of chemicals, pp. III-IV Koudannsya Press Tokyo, Japan.

    Google Scholar 

  2. Celemedson C. et al. (44Scientists). (1996) MEIC Evaluation of acute systemic toxicology.ALTA 24:252–272.

    Google Scholar 

  3. Reifferscheid, G., and J. Heil (1996) Validation of the SOS/umu test using test results of 486 chemicals and comparison with the Ames test and carcinogenicity data.Mutat. Res. 369:129–145.

    Article  CAS  Google Scholar 

  4. Rieger, K. J., A. Kaniak, J. Y. Coppee, G. Aljinovic, A. Baudin-Baillieu, C. Orlowska, R. Gromadka, O. Groudinsk, Di Rago, and J. P. Slonimski (1997) Large-scale phenotypic analysis-the pilot project on yeast chromosome IIIYeast 13:1547–1562.

    Article  CAS  Google Scholar 

  5. Rieger K. J., M. El-Alama, G. Stein, C. Bradshaw, P. P. Slonimski, and K. Maundrell (1999) Chemotyping of yeast mutants using robotics.Yeast 15:973–986.

    Article  CAS  Google Scholar 

  6. Nuwaysir, E. E., M. Bittner, M. Trent, J. Barrett, and C. A. Afshari (1999) Microarrays and toxicology.Mol. Carcinog. 24:153–159.

    Article  CAS  Google Scholar 

  7. Afshari, A. C., E. F. Nuwaysir, and J. C. Barrett (1999) Application of complementary DNA microarray technology to carcinogen identification, toxicology, and drug safety evaluation,Cancer Res. 59:4759–4760.

    CAS  Google Scholar 

  8. Iwahashi, H., W. Yang, and R. M. Tanguay (1995) Detection and expression of the 70 kDa heat shock protein ssb1p at different temperatures inSaccharomyces cerevisiac.Biochem. Biophys. Res. Com. 213:484–548.

    Article  CAS  Google Scholar 

  9. Fujita, K., H. Iwahashi, R. Kawai, and Y. Komatsu (1998) Hsp104 expression and morophorogical changes associated with disinfectants in environmental bioassay using stress response.Water Sci. Technol. 38:237–243.

    Article  CAS  Google Scholar 

  10. Kochneva-Pervukhova N., S. V. Paushkin, V. V. Kushnirov, B. S. Cox, M. F. Tuite, and T. M. D. Avanesyan (1998) Mechanism of inhibition of [psi] prion determinant propagation by a mutation of theN-terminus of the yeast Sup35 protein.EMBO J. 17:5805–5810.

    Article  CAS  Google Scholar 

  11. Fox T. D., L. S. Folley, J. J. Mulero, T. W. McMullin, P. E. Thorsness, L. O. Hedin, and M. C. Costanzo (1991) Analysis and manipulation of yeast mitochondrial genes.Methods Enzymol. 194:149–165.

    Article  CAS  Google Scholar 

  12. Ono B. I., R. Fujimoto, Y. Ohno, N. Maeda, Y. Tsuchiya, T. Usui, and Y. Ishino-Arao (1988) UGA suppressors inSaccharomyces cerevisiae: allelism, action spectra and map positions.Genetics 118:41–47.

    CAS  Google Scholar 

  13. Iwahashi, H., K. Fujita, Y. Takahashi, S. Kameo, and Y. Matsuyama (2000) Identification of chemicals using Microorganisms.Japan Patent 2000–52470.

  14. Iwahashi, H., K. Fujita, and Y. Takahashi (2000) Bioassay for chemical toxicity using yeastSaccharomyces cerevisiae, Water Sci, Technol. (in press).

  15. Piper P. W. (1993) Molecular events associated with acquisition of heat tolerance by the yeastSaccharomyces cerevisiae.FEMS Microbiol. Rev. 11:339–356.

    Article  CAS  Google Scholar 

  16. Fox, T. D., L. S. Folley, J. J. Mulero, T. W. McMullin, P. E. Thorsness, L. O. Hedin, and M. C. Costanzo (1991) Analysis and manipulation of yeast mitochondrial genes.Methods Enzymol. 194:149–165.

    Article  CAS  Google Scholar 

  17. Iwahashi, H. (2000) Bioassay using DNA chip technology. (2000)Biosci. Bioind. 58:27–30.

    Google Scholar 

  18. Iwahashi, H., Y. Momose, S. Kawai, and M. Matumoto (2000) Identification of chemicals.Japan Patent 2000–105907.

  19. Gu, M. B. (2000) Toxicity monitoring of endocrine-disrupting chemicals (EDCs) using freeze-dried recombinant bioluminescent bacteria.Biotechnol. Bioprocess. Eng. 5:395–399.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Iwahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwahashi, H. Multiple-end-point bioassays using microorganisms. Biotechnol. Bioprocess Eng. 5, 400–406 (2000). https://doi.org/10.1007/BF02931938

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931938

Keywords

Navigation