Skip to main content
Log in

Production of lyophilized culture ofLactobacillus acidophilus with preserving cell viability

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Optimal lyophilization process was developed for manufacturing the dried product ofLactobacillus acidophilus with high cell viability. Three major factors, freezing rate, specific surface area of samples, and stabilizer type and their synergy were shown to play a crucial role in the development of an effective lyophilization process. Finally we found an optimal combination among three process parameters mentioned above: an exceptionally high cell survival percentage of 90% was achieved using the 8.28 cm−1 specific surface area of samples, slow freezing rate, and a stabilizer composition of 4% skim milk+1% glycerol +0.1% calcium chloride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarra, P. G. and F. Dellaglio (1984) Colonization of a human intestine by four different genotypes ofLactobacillus acidophilus.Microbiologica 7: 331–339.

    CAS  Google Scholar 

  2. Onishi, N. and A. Yamashiro (1991)Eur. Patent 0416 892.

  3. Moore, W. E. C. and L. H. Moore (1995) Intestinal flora of populations that have a high risk of colon cancer.Appl. Environ. Microbiol. 61: 3202–3207.

    CAS  Google Scholar 

  4. Gangjee, A. A. P., A. Vidwans, S. F. Vasudevan, R. L. Queener, V. Kisliuk, R. M. Cody, N. Li, J. R. Galitsky, and L. S. Pangborn (1998) Structurebased design and synthesis of lipophilic 2,4-diamino-6-substituted quinazolines and their evaluation as inhibitors of dihydrofolate reductases and potential antitumor agents.J. Med. Chem. 41: 3426–3434.

    Article  CAS  Google Scholar 

  5. Watanabe, T. (1996) Suppressive effects of Lactobacillus casel cells, a bacterial immumostimulant, on the incidence of spontaneous thymic lymphoma in AKR mice.Cancer Immunol. Immunother. 42: 285–290.

    Article  CAS  Google Scholar 

  6. Datta, R., S. P. Tsai, P. Bonsignore, S. H. Moon, and J. R. Frank (1995) Technological and economic potential of poly (lactic acid) and lactic acid derivatives.FEMS Microbiol. Rev. 16: 221–231.

    Article  CAS  Google Scholar 

  7. Tsai, S. P. and S. H. Moon (1998) An integrated bioconversion process for production of L-lactic acid from starchy potato feedstocks.Appl. Biochem. Biotechnol. 70/72: 310–317.

    Article  Google Scholar 

  8. Ohleyer, E., H. W. Balanche, and C. R. Wilke (1985) Continuous production of lactic acid in a cell recycle reactor.Appl. Biochem. Biotechnol. 11: 317–331.

    Article  CAS  Google Scholar 

  9. De Man, J. C., M. Rogosa, and M. E. Sharpe (1960) A medium for the cultivation of Lactobacillii.J. Appl. Bact. 23: 458–464.

    Google Scholar 

  10. Kang, M. H. and J. Lee (1998) Continuous cultivation of a human intestinal microflora at high cell concentration via controlled culture recycle.Biotechnol. Lett. 20: 295–299.

    Article  CAS  Google Scholar 

  11. Johnson, J. A. C. and M. R. Etzel (1995) Properties ofLactobacillus heleveticus CNRZ-32 attenuated by spray-drying, freeze-drying, or freezing.J. Dairy Sci. 78: 761–768.

    CAS  Google Scholar 

  12. De valdez, G. F., G. Martos, P. Taranto, G. L. Lorca, G. Oliver, and A. P. de Ruiz Holgado (1997) Influence of bile on β-galactosidase activity and cell viability ofLactobacillus reuteri when subjected to freeze-drying.J. Dairy Sci. 80: 1955–1958.

    Article  Google Scholar 

  13. Desmons, S., H. Krhous, P. Evrard, and P. Thonart (1998) Improvement of lactic cell production.Appl. Biochem. Biotechnol. 70/72: 513–526.

    Article  Google Scholar 

  14. Wright, C. T. and T. R. Klaenhammer (1983) Survival ofLactobacillus bulgaricus during freezing and freeze-drying after growth in the presence of calcium.J. Food Sci. 48: 773–777.

    Article  Google Scholar 

  15. Pikal, M. J. and S. Shah (1990) The cake collapse temperature in freeze drying; dependence on measurement methodology and rate of water removal from the glassy phase.Int. J. Pharm. 62: 165–186.

    Article  CAS  Google Scholar 

  16. De Valdez, G. F., G. S. de Giori, A. A. P. de Ruiz Holgado, and G. Oliver (1983) Protective effect of adonitol on lactic acid bacteria subjected to freezedrying.Appl. Environ. Microbiol. 45: 302–304.

    Google Scholar 

  17. De Valdez, G. F., G. S. de Giori, A. A. P. de Ruiz Holgado, and G. Oliver (1983) Comparative study of the efficiency of some additives in protecting lactic acid bacteria against freeze-drying.Cryobiology 20: 560–566.

    Article  Google Scholar 

  18. Tsvetkov, T. and R. Brankova (1983) Viability of micrococci and lactobacilli upon freezing and freeze-drying in the presence of different cryoprotectants.Cryobiology 20: 318–323.

    Article  CAS  Google Scholar 

  19. Maeda, T., T. Terada, and Y. Tsutsumi (1989) The rate of glycerol and DMSO on the freezing of spermatozoa.Cryo-Lett. 10: 393–400.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeewon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, M.H., Saraswat, V., Lee, J. et al. Production of lyophilized culture ofLactobacillus acidophilus with preserving cell viability. Biotechnol. Bioprocess Eng. 4, 36–40 (1999). https://doi.org/10.1007/BF02931911

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931911

Key words

Navigation