Skip to main content
Log in

Biochemical reactions on a microfluidic chip based on a precise fluidic handling method at the nanoliter scale

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A passive microfluidic delivery system using hydrophobic valving and pneumatic control was devised for microfluidic handling on a chip. The microfluidic metering, cutting, transport, and merging of two liquids on the chip were correctly performed. The error range of the accuracy of microfluid metering was below 4% on a 20 nL scale, which showed that microfluid was easily manipulated with the desired volume on a chip. For a study of the feasibility of biochemical reactions on the chip, a single enzymatic reaction, such as a β-galactosidase reaction was performed. The detection limit of the substrate,i.e. fluorescein di-β-galactopyranoside (FDG) of the β-galactosidase (6.7 fM), was about 76 pM. Additionally, multiple biochemical reactions such asin vitro protein synthesis of enhanced green fluorescence protein (EGFP) were successfully demonstrated at the nanoliter scale, which suggests that our microfluidic chip can be applied not only to miniaturization of various biochemical reactions, but also to development of the microfluidic biochemical reaction system requiring a precise nano-scale control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reyes, D. R., D. Iossifidis, P. A. Auroux, and A. Manz (2002) Micro total analysis systems. 1. Introduction, theory, and technology.Anal. Chem. 74: 2623–2636.

    Article  CAS  Google Scholar 

  2. Auroux, P. A., D. Iossifidis, D. R. Reyes, and A. Manz (2002) Micro total analysis systems. 2. Analytical standard operations and applications.Anal. Chem. 74: 2637–2652.

    Article  CAS  Google Scholar 

  3. Zhao, B., J. S. Moore, and D. J. Beebe (2001) Surface-directed liquid flow inside microchannels.Science 291: 1023–1026.

    Article  CAS  Google Scholar 

  4. Ocvirk, G., M. Munroe, T. Tang, R. Oleschuk, K. Westra, and D. J. Harrison (2000) Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices.Electrophoresis 21: 107–115.

    Article  CAS  Google Scholar 

  5. Gallardo, B. S., V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott (1999) Electrochemical principles for active control of liquids on submillimeter scales.Science 283: 57–60.

    Article  CAS  Google Scholar 

  6. Unger, M. A., H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography.Science 288: 113–116.

    Article  CAS  Google Scholar 

  7. Handique, K., D. T. Burke, C. H. Mastrangelo, and M. A. Burns (2001) On-chip thermopneumatic pressure for discrete drop pumping.Anal. Chem. 73: 1831–1838.

    Article  CAS  Google Scholar 

  8. Terray, A., J. Oakey, and D. W. Marr (2002) Microfluidic control using colloidal devices.Science 296: 1841–1844.

    Article  CAS  Google Scholar 

  9. Zhao, B., J. S. Moore, and D. J. Beebe (2002) Principles of surface-directed liquid flow in microfluidic channels.Anal. Chem. 74: 4259–4268.

    Article  CAS  Google Scholar 

  10. Hong, J. W., V. Studer, G. Hang, W. F. Anderson, and S. R. Quake (2004) A nanoliter-scale nucleic acid processor with parallel architecture.Nat. Biotechnol. 22:435–439.

    Article  CAS  Google Scholar 

  11. Liu, J., C. Hansen, and S. R. Quake (2003) Solving the “world-to-chip” interface problem with a microfluidic matrix.Anal. Chem. 75: 4718–23.

    Article  CAS  Google Scholar 

  12. Paik, P., V. K. Pamula, M. G. Pollack, and R. B. Fair (2003) Electrowetting-based droplet mixers for microfluidic systems.Lab Chip 3: 28–33.

    Article  CAS  Google Scholar 

  13. Srinivasan, V., V. K. Pamula, and R. B. Fair (2004) Droplet-based microfluidic lab-on-a-chip for glucose detection.Anal. Chim. Acta 507: 145–150.

    Article  CAS  Google Scholar 

  14. Cho, S. K., H. J. Moon, and C. J. Kim (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits.J. Microelectromech. Syst. 12: 70–80.

    Article  Google Scholar 

  15. Lee, C. S., S. H. Lee, S. S. Park, Y. K. Kim, and B. G. Kim (2003) Protein patterning on silicon-based surface using background hydrophobic thin film.Biosens. Bioelectron. 18: 437–444.

    Article  CAS  Google Scholar 

  16. Lee, S. H., C. S. Lee, B. G. Kim, and Y. K. Kim (2003) Quantitatively controlled nanoliter liquid manipulation using hydrophobic valving and control of surface wettability.J. Micromech. Microeng. 13: 89–97.

    Article  CAS  Google Scholar 

  17. Lee, S. H., S. I. Cho, C. S. Lee, B. G. Kim, and Y. K. Kim (2005) Microfluidic chip for biochemical reaction and electrophoretic separation by quantitative volume control.Sens. Actuators B Chem. 110: 164–173.

    Article  CAS  Google Scholar 

  18. Mrksich, M., C. S. Chen, Y. Xia, L. E. Dike, D. E. Ingber, and G. M. Whitesides (1996) Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold.Proc. Natl. Acad. Sci. USA 93: 10775–10778.

    Article  CAS  Google Scholar 

  19. Li, B. M. and D. Y. Kwok (2003) A lattice Boltzmann model for electrokinetic microchannel flow of electrolyte solution in the presence of external forces with the Poisson-Boltzmann equation.Int. J. Heat Mass Tran. 46: 4235–4244.

    Article  CAS  Google Scholar 

  20. Park, S. S., H. S. Joo, S. I. Cho, M. S. Kim, Y. K. Kim, and B. G. Kim (2003) Multi-step reactions on microchip platform using nitrocellulose membrane reactor.Biotechnol. Bioprocess Eng. 8: 257–262.

    Article  CAS  Google Scholar 

  21. Labrousse, H., J. L. Guesdon, J. Ragimbeau, and S. Avrameas (1982) Miniaturization of beta-galactosidase immunoassays using chromogenic and fluorogenic substrates.J. Immunol. Methods 48: 133–147.

    Article  CAS  Google Scholar 

  22. Wu, C. F., H. J. Cha, G. Rao, J. J. Valdes, and W. E. Bentley (2000) A green fluorescent protein fusion strategy for monitoring the expression, cellular location, and separation of biologically active organophosphorus hydrolase.Appl. Microbiol. Biotechnol. 54: 78–83.

    Article  CAS  Google Scholar 

  23. Johnvesly, B., D. G. Kang, S. S. Choi, J. H. Kim, and H. J. Cha (2004) Comparative production of green fluorescent protein under co-expression of bacterial hemoglobin inEscherichia coli W3110 using different culture scales.Biotechnol. Bioprocess Eng. 9: 274–277.

    Article  CAS  Google Scholar 

  24. Stiege, W. and V. A. Erdmann (1995) The potentials of thein vitro protein biosynthesis system.J. Biotechnol. 41: 81–90.

    Article  CAS  Google Scholar 

  25. Ahn, J. H., C. Y. Choi, and D. M. Kim (2005) Effect of energy source on the efficiency of translational termination during cell-free protein synthesis.Biochem. Biophys. Res. Commun. 337: 325–329.

    Article  CAS  Google Scholar 

  26. Kim, D. M., T. Kigawa, C. Y. Choi, and S. Yokoyama (1996) A highly efficient cell-free protein synthesis system from Escherichia coli.Eur. J. Biochem. 239: 881–886.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CS., Lee, SH., Kim, YG. et al. Biochemical reactions on a microfluidic chip based on a precise fluidic handling method at the nanoliter scale. Biotechnol. Bioprocess Eng. 11, 146–153 (2006). https://doi.org/10.1007/BF02931899

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931899

Keywords

Navigation