Skip to main content
Log in

Polymer based cardiovascular gene therapy

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Therapeutic angiogenesis is a new potential treatment in cardiovascular disease. It is performed by the delivery of the angiogenic agents (protein, gene). Most important consideration for gene therapy is the construction of an effective therapeutic gene. Currently, VEGF is the most effective therapeutic gene for the neovascularization. We constructed the hypoxia-regulated VEGF plasmid using the Epo enhancer and RTP801 promoter. The efficiency of the pEpo-SV-VEGF and pRTP801-VEGF were evaluated by various methodsin vitro andin vivo. The results suggested that the hypoxia-inducible VEGF gene therapy system is effective and safe, which may be useful for the gene therapy of ischemic heart disease. Development of a safe and efficient gene carrier is another main requirement for successful gene therapy. Although viralbased gene delivery is currently the most effective way to transfer genes to cells, nonviral vectors are increasingly being considered forin vivo gene delivery. The advantages of nonviral gene therapy are lack of specific immunogenecity, simplicity of use, and ease of large-scale production. In addition, the simple conjugation of a targeting moiety to nonviral gene carrier can facilitate tissue-targeting gene delivery. We have developed two new gene carrier systems, TerplexDNA and WSLP (water soluble lipopolymer). These two are efficient carrier to ischemic myocardium and has low toxicity and high transfection efficiency. So it may allow for application ofin vivo gene therapy in the treatment of heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azrin, M. (2001) Angiogenesis, protein and gene delivery.Br. Med. Bull. 59: 211–225.

    Article  CAS  Google Scholar 

  2. Kastrup, J., E. Jorgensen, and V. Drvota (2001) Vascular growth factor and gene therapy to induce new vessels in the ischemic myocardium. Therapeutic angiogenesis.Scand. Cardiovasc. J. 35: 291–296.

    Article  CAS  Google Scholar 

  3. Isner, J. M. (2002) Myocardial gene therapy.Nature 415: 234–239.

    Article  CAS  Google Scholar 

  4. Symes, J. F., D. W. Losordo, P. R. Vale, K. G. Lathi, D. D. Esakof, M. Mayskiy, and J. M. Isner (1999) Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease.Ann. Thorac. Surg. 68: 836–837.

    Article  Google Scholar 

  5. Vale, P. R., D. W. Losordo, C. E. Milliken, M. Maysky, D. D. Esakof, J. F. Symes, and J. M. Isner (2000) Left ventricular electromechanical mapping to assess efficacy of phVEGF (165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia.Circulation 102: 965–974.

    CAS  Google Scholar 

  6. Sylven, C., N. Sarkar, A. Ruck, V. Drvota, S. Y. Hassan, B. Lind, A. Nygren, Q. Kallner, P. Blomberg, J. van der Lindern, D. Lindblom, L. A. Brodin, and K. B. Islam (2001), Myocardial Doppler tissue velocity improves following myocardial gene therapy with VEGF-A165 plasmid in patients with inoperable angina pectoris.Coron. Artery Dis. 12: 239–243.

    Article  CAS  Google Scholar 

  7. Affleck, D. G., L., Yu, D. A. Bull, S. H. Bailey, and S. W. Kim (2001) Augmentation of myocardial transfection using Terplex DNA: a novel gene delivery system.Gene Ther. 8: 349–353.

    Article  CAS  Google Scholar 

  8. Lee, M., J. Rentz, S. Han, D. A. Bull, and S. W. Kim (2003) Water soluble lipopolymer as an efficient carrier for gene delibery to myocardium.Gene Ther. 10: 585–593.

    Article  CAS  Google Scholar 

  9. Brogi, E., G. Schatteman, T. Wu, E. A. Kim, L. Varticovski, B. Keyt, and J. M. Isner (1996) Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression.J. Clin. Invest. 97: 469–476.

    Article  CAS  Google Scholar 

  10. Lee, J. S. and A. M. Feldman (1998) Gene therapy for therapeutic myocardial angiogenesis: a promising synthesis of two emerging technologies.Nat. Med. 4: 739–742.

    Article  Google Scholar 

  11. Springer, M. L., A. S. Chen, P. E. Kraft, M. Bednarski, and H. M. Blau (1998) VEGF gene delivery to muscle: potential role for vasculogenesis in adults.Mol. Cell 2: 549–558.

    Article  CAS  Google Scholar 

  12. Lee, R. J., M. L. Springer, W. E. Blanco-Bose, R. Shaw, P. C. Ursell, and H. M. Blau (2000) VEGF gene delivery to myocardium: deleterious effects of unregulated expression.Circulation 102: 898–901.

    CAS  Google Scholar 

  13. Lee, M., J. Rentz, M. Bikram, S. Han, D. A. Bull, and S. W. Kim (2003) Hypoxia-inducible VEGF gene delivery to ischemic myocardium using water-soluble lipopolymer.Gene Ther. 10: 1535–1542.

    Article  CAS  Google Scholar 

  14. Maxwell, P. H., C. W. Pugh, and P. J. Rateliffe (1993) Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: evidence for a widespread oxygensensing mechanism.Proc. Natl. Acad. Sci. USA 90: 2423–2427.

    Article  CAS  Google Scholar 

  15. Shoshani, T., A. Faerman, I. Mett, E. Zelin, T. Tenne, S. Gorodin, Y. Moshel, S. Elbaz, A. Budanov, A. Chajut, H. Kalinski, I. Kamer, A. Rozen, O. Mor, E. Keshet, D. Leshkowitz, P. Einat, R. Skaliter, and E. Feinstein (2002) Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis.Mol. Cell. Biol. 22: 2283–2293.

    Article  CAS  Google Scholar 

  16. Wang, G. L., B.-H. Jiang, E. A. Rue, and G. L. Semenza (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension.Proc. Natl. Acad. Sci. USA 92: 5510–5514.

    Article  CAS  Google Scholar 

  17. Wenger, R. H. and M. Gassmann (1997) Oxygen(es) and the hypoxia-inducible factor-1.Biol. Chem. 378: 609–616.

    CAS  Google Scholar 

  18. Jiang, B.-H., E. Rue, G. L. Wang, R. Roe, and G. L. Semenza (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1.J. Biol. Chem. 271: 17771–17778.

    Article  CAS  Google Scholar 

  19. Semenza, G. L., B. H. Jiang, S. W. Leung, R. Passantino, J. P. Concordet, P. Maire, and A. Giallongo (1996) Hypoxia response elements in the aldolase A. enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1.J. Biol. Chem. 271: 32529–32537.

    Article  CAS  Google Scholar 

  20. Wang, G. L. and G. L. Semenza (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia.Proc. Natl. Acad. Sci. USA 90: 4304–4308.

    Article  CAS  Google Scholar 

  21. Xu, Q., Y.-S. Ji, and J. F. Schmedtje, Jr. (2000). Sp1 increases expression of cyclooxygenase-2 in hypoxic vascular endothelium. Implications for the mechanisms of aortic aneurysm and heart failure.J. Biol. Chem. 275: 24583–24589.

    Article  CAS  Google Scholar 

  22. Lee, M., M. Bikram, S. Oh, D. A. Bull, and S. W. Kim (2004) Spl-dependent regulation of the RTP801 promoter and its application to hypoxia-inducible VEGF plasmid for ischemic disease.Pharm. Res. 21: 736–741.

    Article  CAS  Google Scholar 

  23. Kabanov, A. V., and V. A. Kabanov (1995) DNA complexes with polycations for the delivery of genetic material into cells.Bioconjug. Chem. 6: 7–20.

    Article  CAS  Google Scholar 

  24. Han, S., R. I. Mahato, Y. K. Sung, and S. W. Kim (2000) Development of biomaterials for gene therapy.Mol. Ther. 2: 1–16.

    Article  CAS  Google Scholar 

  25. Wu, G. Y. and C. H. Wu (1987) Receptor-mediatedin vitro gene transformation by a soluble DNA carrier system.J. Biol. Chem. 262: 4429–4432.

    CAS  Google Scholar 

  26. Wu, G. Y. and C. H. Wu (1988) Receptor-mediated gene delivery and expressionin vivo.J. Biol. Chem. 263: 14621–14624.

    CAS  Google Scholar 

  27. Wu, C. H., J. M. Wilson, and G. Y. Wu (1989) Targeting genes: delivery and persistent expression of a foreign gene driven by mammalian regulatory elementsin vivo.J. Biol. Chem. 264: 16985–16987.

    CAS  Google Scholar 

  28. Chiou, H. C., M. V. Tangco, S. M. Levine, D. Robertson, K. Kormis, C. H. Wu, and G. Y. Wu (1994) Enhanced resistance to nuclease degradation of nucleic acids complexed to asaloglycoprotein-polylysine carrier.Nucleic Acids Res. 22: 5439–5446.

    Article  CAS  Google Scholar 

  29. Wagner, E., M. Zenke, M. Cotten, H. Beug, and M. L. Birnstiel (1990) Transferrin-polycation conjugates as carriers for DNA uptake into cells.Proc. Natl. Acad. Sci. USA 87: 3410–3414.

    Article  CAS  Google Scholar 

  30. Wagner, E., C. Plank, K. Zatloukal, M. Cotten, and M. L. Birnstiel (1992) Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferring-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle.Proc. Natl. Acad. Sci. USA 89: 7934–7938.

    Article  CAS  Google Scholar 

  31. Trubetskoy, V. S., V. P. Torchilin, S. L. Kennel, and L. Huang (1992) Use of N-terminal modified poly(L-lysine)-antibody conjugated as a carrier for targeted gene delivery in mouse lung endothelial cells.Bioconjug. Chem. 3: 323–327.

    Article  CAS  Google Scholar 

  32. Midoux, P., C. Mendes, A. Legrand, J. Raimond, R. Mayer, M. Monsigny, and A. C. Roche (1993) Specific gene transfer mediated by lactosylated poly-L-lysine into hepatoma cells.Nucleic Acids Res. 21: 871–878.

    Article  CAS  Google Scholar 

  33. Martinez-Fong D, J. E. Mullersman, A. F. Purchio, J. Armendariz-Borunda, and A. Martinez-Hernandez (1994) Nonenzymatic glycosylation of poly-L-lysine: a new tool for targeted gene delivery.Hepatology 20: 1602–1608.

    Article  CAS  Google Scholar 

  34. Erbacher, P., M. T. Bousser, J. Raimond, M. Monsigny, P. Midoux, and A. C. Roche (1996) Gene transfer by DNA/glycosylated polylysine complexes into human blood monocyte-derived macrophages.Hum. Gene Ther. 7: 721–729.

    Article  CAS  Google Scholar 

  35. Choi, Y. H., F. Liu, J. S. Choi, S. W. Kim, and J. S. Park (1999) Characterization of a targeted gene carrier, lactose-polyethylene glycol-grafted ploy-L-lysine and its complex with plasmid DNA.Hum. Gene Ther. 10: 2657–2665.

    Article  CAS  Google Scholar 

  36. Kim, J.-S., A. Maruyama, T. Akaike, and S. W. Kim (1997).In vitro gene expression on smooth muscle cells using a terplex delivery system.J. Control. Release 47: 51–59.

    Article  CAS  Google Scholar 

  37. Kim, J.-S., B. I. Kim, A. Maruyama, T. Akaike, and S. W. Kim (1998) A new non-viral DNA delivery vector: the terplex system.J. Control. Release 53: 175–182.

    Article  CAS  Google Scholar 

  38. Kim, J.-S., A. Maruyama, T. Akaike, and S. W. Kim (1998) Terplex DNA delivery system as a gene carrier.Pharm. Res. 15: 116–121.

    Article  CAS  Google Scholar 

  39. Yu, L., M. Nielsen, S. Han, and S. W. Kim (2001) Terplex DNA gene carrier system targeting artery wall cells.J. Control. Release 72: 179–189.

    Article  CAS  Google Scholar 

  40. Havel, R. J. (1998) Receptor and non-receptor mediated uptake of chylomicron remnants by the liver.Atherosclerosis 141 Suppl 1: S1-S7.

    CAS  Google Scholar 

  41. Shih, I. L., R. S. Lees, M. Y. Chang, and A. M. Lees (1990) Focal accumulation of an apolipoprotein B-based synthetic oligopeptide in the healing rabbit arterial wall.Proc. Natl. Acad. Sci. USA 87: 1436–1440.

    Article  CAS  Google Scholar 

  42. Lougheed, M., E. D. Moore, D. R. Scriven, and U. P. Steinbrecher (1999) Uptake of oxidized LDL by macrophages differs form that of acetyl LDL and leads to expansion of an acidic endolysosomal compartment.Arterioscler. Thromb. Vasc. Biol. 19: 1881–1890.

    CAS  Google Scholar 

  43. Abdallah, B., A. Hassan, C. Benoist, D. Goula, J. P. Behr, and B. A. Demeneix (1996) A powerful nonviral vector forin vivo gene transfer into the adult mammalian brain: polyethylenimine.Hum. Gene Ther. 7: 1947–1954.

    Article  CAS  Google Scholar 

  44. Godbey, W. T., K. K. Wu, and A. G. Mikos (1999) Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle.J. Biomed. Mater. Res. 45: 268–275.

    Article  CAS  Google Scholar 

  45. Benns, J. M., A. Maheshwari, D. Y. Furgeson, R. I. Mahato, and S. W. Kim (2001) Folate-PEG-folate-graftpolyehylenimine-based gene delivery.J. Drug Target 9: 123–139.

    Article  CAS  Google Scholar 

  46. Han, S., R. I. Mahato, and S. W. Kim (2001) Watersoluble lipopolymer for gene delivery.Bioconjug. Chem. 12: 337–345.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghoon Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, D. Polymer based cardiovascular gene therapy. Biotechnol. Bioprocess Eng. 12, 39–42 (2007). https://doi.org/10.1007/BF02931801

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931801

Keywords

Navigation