Skip to main content
Log in

Reductions in genetic variation inDrosophila andE. coli caused by selection at linked sites

  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Selection at linked sites has important consequences for the properties of neutral variation and for tests of the predictions of the neutral theory of molecular evolution. We review the theory of the effect of adaptive gene substitutions on neutral variability at linked sites (hitchhiking or selective sweeps) and discuss theoretical results on the effect of selection against deleterious alleles on variation at linked sites (background selection). InDrosophila melanogaster there is a clear relation between the frequency of recombination in a given region of the chromosome and the amount of natural variability in that region. Attempts to predict this relation have given rise to models of selective sweeps and background selection. We describe possible methods of discriminating between these models, and also discuss the probable strong influence of selective sweeps on variation in largely nonrecombining genomes, with particular reference toEscherichia coll. Finally we present some unresolved questions and possible directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguade M., Miyashita N. and Langley C. H. 1989 Reduced variation in theyellow-achaete-scute region in natural populations ofDrosophila melanogaster.Genetics 122: 607–615

    PubMed  Google Scholar 

  • Akashi H. 1995 Inferring weak selection from patterns of polymorphism and divergence at “silent” sites inDrosophila DNA.Genetics 139: 1067–1076

    PubMed  CAS  Google Scholar 

  • Aquadro C. F., Begun D. J. and Kindahl E. C. 1994 Selection, recombination, and DNA polymorphism inDrosophila. InNon-neutral evolution: theories and molecular data (ed.) B. Golding (London: Chapman and Hall) pp. 46–56

    Google Scholar 

  • Ashburner M. 1989Drosophila: a laboratory handbook (Cold Spring Harbor: Cold Spring Harbor Laboratory Press)

    Google Scholar 

  • Atwood K. C., Schneider L. K. and Ryan F. J. 1951a Selective mechanisms in bacteria.Cold Spring Harbor Symp. Quant. Biol. 16: 345–355

    PubMed  CAS  Google Scholar 

  • Atwood K. C., Schneider L. K. and Ryan F. J. 1951b Periodic selection inEscherichia coli.Proc. Natl, Acad. Sci. USA 37:146–155

    Article  CAS  Google Scholar 

  • Barton N. H. 1995 Linkage and the limits to natural selection.Genetics 140: 82–84

    Google Scholar 

  • Begun D. J. and Aquadro C. F. 1992 Levels of naturally occurring DNA polymorphism correlate with recombination rate inDrosophila melanogaster.Nature 356: 519–520

    Article  PubMed  CAS  Google Scholar 

  • Berg O. G. 1995 Periodic selection and hitchhiking in a bacterial population.J. Theor. Biol 173: 307–320

    Article  PubMed  CAS  Google Scholar 

  • Berg O. G. 1996 Selection intensity for codon bias and the effective population size ofEscherichia coli Genetics 142: 1379–1382

    CAS  Google Scholar 

  • Berry A. J., Ajioka J. W. and Kreitman M. 1991 Lack of polymorphism on theDrosophila fourth chromosome resulting from selection.Genetics 129: 1111–1117

    PubMed  CAS  Google Scholar 

  • Bird A. P. 1995 Gene number, noise reduction and biological complexity.Trends Genet. 11: 94–100

    Article  PubMed  CAS  Google Scholar 

  • Birky C. W. and Walsh J. B. 1988 Effects of linkage on rates of molecular evolution.Proc. Natl. Acad. Sci. USA 85: 6414–6418

    Article  PubMed  CAS  Google Scholar 

  • Braverman J. M., Hudson R. R., Kaplan N. L., Langley C. H. and Stephan W. 1995 The hitchhiking effect on the site frequency spectrum of DNA polymorphism.Genetics 140: 783–796

    PubMed  CAS  Google Scholar 

  • Charlesworth B. 1992 New genes sweep clean.Nature 356: 475–476

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B. 1994a The effect of background selection against deleterious alleles on weakly selected, linked variants.Genet. Res. 63: 213–228

    PubMed  CAS  Google Scholar 

  • Charlesworth B. 1994b Patterns in the genome.Curr. Biol. 4: 182–184

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B. 1996 Background selection and patterns of genetic diversity inDrosophila melanogaster. Genet. Res. (in press)

  • Charlesworth B., Morgan M. T. and Charlesworth D. 1993 The effect of deleterious mutations on neutral molecular variation.Genetics 34: 1289–1303

    Google Scholar 

  • Charlesworth D., Charlesworth B. and Morgan M. T. 1995 The pattern of neutral molecular variation under the background selection model.Genetics 141: 1619–1632

    PubMed  CAS  Google Scholar 

  • Crow J. F. 1993 How much do we know about spontaneous human mutation rates?Environ. Mol. Mut. 21: 122–129

    Article  CAS  Google Scholar 

  • Crow J. F. and Simmons M. J. 1983 The mutation load inDrosophila. InThe genetics and biology of Drosophila (eds.) M. Ashburner, H. L. Carson and J. N. Thompson (London: Academic Press) vol. 3c, pp. 1–35

    Google Scholar 

  • Drake J. W. 1992 Mutation rates.Bioessays 14: 137–140

    Article  PubMed  CAS  Google Scholar 

  • Dykhuizen D. E. 1992 Periodic selection. InEncyclopedia of microbiology (San Diego: Academic Press) pp. 351–355

    Google Scholar 

  • Dykhuizen D. E. and Hartl D. L. 1983 Selection in chemostats.Microbiol. Rev. 47: 150–168

    PubMed  CAS  Google Scholar 

  • Fu Y. -X. and Li W. -H. 1993 Statistical tests of neutrality of mutations.Genetics 133: 693–709

    PubMed  CAS  Google Scholar 

  • Gillespie J. H. 1994 Alternatives to the neutral theory. InNon-neutral evolution: theories and molecular data (ed.) B. Golding (London: Chapman and Hall) pp. 1–17

    Google Scholar 

  • Guttman D. S. and Dykhuizen D. E. 1994a Detecting selective sweeps in naturally occurringEscherichia coli.Genetics 138: 993–1003

    PubMed  CAS  Google Scholar 

  • Guttman D. S. and Dykhuizen D. E. 1994b Clonal divergence inEscherichia coli as a result of recombination, not mutation.Science 266: 1380–1383

    Article  PubMed  CAS  Google Scholar 

  • Haldane J. B. S. 1927 A mathematical theory of natural and artificial selection. Part V. Selection and mutation.Proc. Cambridge Philos. Soc. 23: 838–844

    Google Scholar 

  • Hartl D. L., Moriyama E. N. and Sawyer S. A. 1994 Selection intensity for codon bias.Genetics 138: 227–234

    PubMed  CAS  Google Scholar 

  • Hudson R. R. 1994 How can the low levels of DNA sequence variation in regions of theDrosophila genome with low recombination rates be explained?Proc. Natl. Acad. Sci USA 91: 6815–6818

    Article  PubMed  CAS  Google Scholar 

  • Hudson R. R. and Kaplan N. L. 1994 Gene trees with background selection. InNon-neutral evolution: theories and molecular data (ed.) B. Golding (London: Chapman and Hall) pp. 140–153

    Google Scholar 

  • Hudson R. R. and Kaplan N. L. 1995 Deleterious background selection with recombination.Genetics 141: 1605–1617

    PubMed  CAS  Google Scholar 

  • Hudson R. R., Kreitman M. and Aguade M. 1987 A test of neutral molecular evolution based on nucleotide data.Genetics 116: 153–159

    PubMed  CAS  Google Scholar 

  • Jarne P. 1995 Mating system, bottlenecks and polymorphism in hermaphroditic animals.Genet. Res. 65: 193–207

    Article  Google Scholar 

  • Kaplan N. L., Hudson R. R. and Langley C. H. 1989 The “hitch-hiking“ effect revisited.Genetics 123: 887–899

    PubMed  CAS  Google Scholar 

  • Keightley P. D. 1994 The distribution of mutation effects on viability inDrosophila melanogaster.Genetics 138: 1–8

    Google Scholar 

  • Kimura M. 1971 Theoretical foundations of population genetics at the molecular level.Theor. Popul. Biol. 2: 174–208

    Article  PubMed  CAS  Google Scholar 

  • Kimura M. 1983The neutral theory of molecular evolution (Cambridge: Cambridge University Press)

    Google Scholar 

  • Kimura M. and Crow J. F. 1964 The number of alleles that can be maintained in a finite population.Genetics 49: 725–738

    PubMed  CAS  Google Scholar 

  • Kimura M. and Maruyama T. 1966 The mutational load with epistatic gene interactions in fitness.Genetics 54: 1303–1312

    Google Scholar 

  • Kimura M. and Ohta T. 1969 The average number of generations until extinction of an individual mutant gene in a population.Genetics 63: 701–709

    PubMed  CAS  Google Scholar 

  • Kliman R. M. and Hey J. 1993 Reduced natural selection associated with low recombination inDrosophila melanogaster.Mol. Biol Evol. 10: 1239–1258

    PubMed  CAS  Google Scholar 

  • Kreitman M. 1983 Nucleotide polymorphism at the alcohol dehydrogenase locus ofDrosophila melanogaster.Nature 304: 412–417

    Article  PubMed  CAS  Google Scholar 

  • Kreitman M. 1991 Detecting selection at the level of DNA. InEvolution at the molecular level (eds.) R. K. Selander, A. G. Clark and T. S. Whittam (Sunderland, Mass., USA: Sinauer) pp. 202–221

    Google Scholar 

  • Kreitman M. and Wayne M. L. 1994 Organization of genetic variation at the molecular level: lessons fromDrosophila. InMolecular ecology and evolution: approaches and applications (eds.) B. Schierwater, B. Streit, G. P. Wagner and R. DeSalle (Basel: Birkhauser) pp. 157–184

    Google Scholar 

  • Levin B. R. 1981 Periodic selection, infectious gene exchange and the genetic structure ofE. coli populations.Genetics 99: 1–23

    PubMed  CAS  Google Scholar 

  • Levin B. R. 1988 The evolution of sex in bacteria. InThe evolution of sex (eds.) R. E. Michod and B. R. Levin (Sunderland, Mass., USA: Sinauer) pp. 194–211

    Google Scholar 

  • Lindsley D. L. and Zimm G. G. 1992The genome of Drosophila melanogaster (San Diego: Academic Press)

    Google Scholar 

  • Maynard Smith J. 1991 The population genetics of bacteria.Proc. R. Soc. London B245: 37–41

    Article  Google Scholar 

  • Maynard Smith J. and Haigh J. 1974 The hitch-hiking effect of a favourable gene.Genet. Res. 23: 23–35

    Google Scholar 

  • Maynard Smith J., Smith N. H., O’Rourke M. and Spratt B. G. 1993 How clonal are bacteria?Proc. Natl. Acad. Sri. USA 90: 4384–4388

    Article  Google Scholar 

  • Milkman R. 1973 Electrophoretic variation inEscherichia coli from natural sources.Science 182: 1024–1026

    Article  PubMed  CAS  Google Scholar 

  • Milkman R. 1975 Allozyme variation ofE. coli of diverse natural origins. InIsozymes (ed.) C. L. Markert (New York: Academic Press) vol. 4, pp. 273–285

    Google Scholar 

  • Milkman R. and Bridges M. M. 1990 Molecular evolution of theEscherichia coli chromosome. III. Clonal frames.Genetics 126: 505–517

    PubMed  CAS  Google Scholar 

  • Moriyama E. N. and Powell J. R. 1996 Intraspecific nuclear DN A variation inDrosophila.Mol. Biol. Evol. 13: 261–277

    PubMed  CAS  Google Scholar 

  • Mukai T., Chigusa S. I., Mettler L. E. and Crow J. F. 1972 Mutation rate and dominance of genes affecting viability inDrosophila melanogaster.Genetics 72: 335–355

    PubMed  CAS  Google Scholar 

  • Nordborg M., Charlesworth B. and Charlesworth D. 1996 The effect of recombination on background selection.Genet. Res. 67: 159–174

    PubMed  CAS  Google Scholar 

  • Ohnishi O. 1977 Spontaneous and ethyl methanesulfonate-induced mutations controlling viability inDrosophila melanogaster. II. Homozygous effects of polygenic mutations.Genetics 87: 529–545

    PubMed  CAS  Google Scholar 

  • Ohta T. 1971 Associative overdominance caused by linked detrimental mutations.Genet. Res. 18: 277–286

    Google Scholar 

  • Ohta T. 1973 Effect of linkage on behaviour of mutant genes in finite populations.Theor. Popul. Biol. 4: 145–172

    Article  Google Scholar 

  • Ohta T. and Kimura M. 1975 The effect of a selected locus on heterozygosity of neutral alleles (the hitch-hiking effect).Genet. Res. 25: 313–326

    Google Scholar 

  • Peck J. 1994 A ruby in the rubbish: beneficial mutations, deleterious mutations, and the evolution of sex.Genetics 137: 597–606

    PubMed  CAS  Google Scholar 

  • Reeves P. R. 1992 Variation in O-antigens, niche-specific selection, and bacterial populations.FEMS Microbiol. Lett. 100: 509–516

    Article  Google Scholar 

  • Selander R. K. and Levin B. R. 1980 Genetic diversity and structure inEscherichia coli populations.Science 210: 545–547

    Article  PubMed  CAS  Google Scholar 

  • Simonsen K. L., Churchill G. A. and Aquadro C. F. 1995 Properties of statistical tests of neutrality for DNA polymorphism data.Genetics 141: 413–429

    PubMed  CAS  Google Scholar 

  • Slatkin M. 1995 Hitchhiking and associative overdominance at a microsatellite locus.Mol. Biol. Evol. 12: 473–480

    PubMed  CAS  Google Scholar 

  • Stephan W. 1995 An improved method for estimating the rate of fixation of favorable mutations based on DNA polymorphism data.Mol. Biol. Evol 12: 959–962

    PubMed  CAS  Google Scholar 

  • Stephan W. and Langley C. H. 1989 Molecular genetic variation in the centromeric region of the X chromosome in threeDrosophila ananassae populations. I. Contrasts between thevermilion andforked loci.Genetics 121: 89–99

    PubMed  CAS  Google Scholar 

  • Stephan W., Wiehe T. H. E. and Lenz M. W. 1992 The effect of strongly selected substitutions on neutral polymorphism: analytical results based on diffusion theory.Theor. Popul. Biol. 41: 237–254

    Article  Google Scholar 

  • Sturtevant A. H. 1929 The genetics ofDrosophila simulans.Carnegie Inst. Wash. Publ. 399: 1–62

    Google Scholar 

  • Sved J. A. 1972 Heterosis at the level of the chromosome and at the level of the gene.Theor. Popul. Biol 3: 491–506

    Article  PubMed  CAS  Google Scholar 

  • Tajima F. 1989 Statistical method for testing the neutral mutation hypothesis.Genetics 123: 585–595

    PubMed  CAS  Google Scholar 

  • Thomson G. 1977 The effect of a selected locus on linked neutral loci.Genetics 85: 753–788

    PubMed  CAS  Google Scholar 

  • True J. R., Mercer J. M. and Laurie C. C. 1996 Differences in crossover frequency and distribution among three sibling species ofDrosophila.Genetics 142: 507–523

    PubMed  CAS  Google Scholar 

  • Whittam T. S. and Ake S. E. 1993 Genetic polymorphisms and recombination in natural populations ofE. coli. InMechanisms of molecular evolution (eds.) N. Takahata and A. G. Clark (Sunderland, Mass., USA: Sinauer) pp. 223–245

    Google Scholar 

  • Wiehe T. H. E. and Stephan W. 1993 Analysis of a genetic hitchhiking model and its application to DNA polymorphism data.Mol. Biol. Evol. 10: 842–854

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlesworth, B., Guttman, D.S. Reductions in genetic variation inDrosophila andE. coli caused by selection at linked sites. J. Genet. 75, 49–61 (1996). https://doi.org/10.1007/BF02931751

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931751

Keywords

Navigation