Skip to main content
Log in

Response of parathyroid hormone to exercise and bone mineral density in adolescent female athletes

  • Original Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

Background

This study investigates 1) the effects of amount of exercise on levels of serum parathyroid hormone (PTH) and calcium, and 2) the relationship between PTH response and bone mineral density in adolescent female athletes.

Subjects

Twenty-one female athletes on a top-ranked high school basketball team in Japan participated in a one-month intensive basketball program. Subjects were divided into moderate-exercise and strenuous-exercise groups.

Methods

The amount of exercise was quantified using estimated metabolic equivalent (METs) and exercise hours. Levels of serum intact-PTH and calcium were examined five times: twice before training to establish a baseline (T-1 and T0), once 3rd week of the training period (T1, once immediately at the end of the program (T2), and again one week later3). Bone mineral density of forearm (distal-BMD) was measured one week after the end of the program. PTH levels at T1, T2 and3 were regressed on PTH at baseline (T0) for both groups and examined for statistical significance. Multiple regression analyses of the changes of PTH and distal-BMD were conducted.

Results

1) Strenuous-exercise subjects showed both increased and decreased PTH levels, while moderate-exercise subjects showed a uniform decrease in PTH throughout the exercise period. 2) Increased PTH was an independent negative predictor of distal-BMD, while high lean body mass, increased serum Ca, and exercise volume were positive predictors.

Conclusion

The amount of exercise affects PTH response: moderate exercise suppresses PTH secretion, while strenuous exercise is apt to induce continuous secretion, which has a negative effect on BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kanders B.,Dempster DW, Lindsay R. Interaction of calcium nutrition and physical activity on bone mass in young women. J Bone Miner Res 1988;3:45–9.

    Google Scholar 

  2. Alekel L, Clasey JL, Fehling PC, Weigel RM, Boileau RA, Erdman JW, Stillman R. Contributions of exercise, body composition, and age to bone mineral density in premenopausal women. Med Sci Sports Exerc 1995;27: 1477–85.

    PubMed  CAS  Google Scholar 

  3. Tylavsky FA, Anderson JJB, Talmage RV, Taft TN. Are calcium intakes and physical activity patterns during adolescent related to radial bone mass of white college-age females?. Osteopor Int 1192;2: 232–40.

    Article  Google Scholar 

  4. Wolman RL, Faulmann L, Clark P, Hesp R, Harries MG. Different training patterns and bone mineral density of the femoral shaft in elite, female athletes. Ann Rhem Dis 1991;50: 487–9.

    Article  CAS  Google Scholar 

  5. Grimston SK, Tanguay KE, Gundgerg CM, Hanley DA. The calciotropic hormone response to changes in serum calcium during exercise in female long distance runners. J Clin Endocrinol Metab 1993;76: 867–72.

    Article  PubMed  CAS  Google Scholar 

  6. Risser WL, Lee EJ, LeBlanc A, Poindxter HB, Risser JM, Schneider V. Bone density in eumenorrheic female college athletes. Med Sci Sports Exerc 1990;22: 570–4.

    Article  PubMed  CAS  Google Scholar 

  7. Charles YCP. Calcium metabolism. J Am Coll Nutr 1989;8: 46S- 53S.

    Google Scholar 

  8. Black KS, Mundy GR. Other causes of hypercalcemia. In: The Parathyroids, Bilezikian JP, Levine MA, and Marcus R (Eds.). New York: Raven Press, Ltd., 1994: 341–57.

    Google Scholar 

  9. Shoumura S, Iwasaki Y, Ishizaki N, Emura S, Hayashi K, Yamahira T, Shoumura K, Isono H. Origin of autonomic nerve fibers innervating the parathyroid gland in the rabbit. Acta anat 1983;115: 289–95.

    Article  PubMed  CAS  Google Scholar 

  10. Fukase M. PTH (Japanese). Medicina 1994;31: 384–6.

    Google Scholar 

  11. Tomita A, Shimizu H, Ozoe S, Miyajima S, Kizawa S, Asanuma H, Koike A, Naruse R. Clinical study of blood intact PTH measurement by two-site IRMA method (Japanese). Clin Endocrinol 1988;36: 991–6.

    Google Scholar 

  12. Ljunghall S, Larsson K, Lindh E, Lindqvist U, Rastad J, Å Kerström G, Wide L. Disturbance of basal and stimulated serum levels of intact parathyroid hormone in primary hyperparathyroidism. Surgery 1991;110: 47–53.

    PubMed  CAS  Google Scholar 

  13. Yamamoto N, Takahashi H, Tanizawa T, Fujimoto R, Tanaka S. Maintenance of bone mass by physical exercise after discontinuation of intermittent hPTH (1-34) administration. Bone Miner 1993;23: 333–42.

    Article  PubMed  CAS  Google Scholar 

  14. Isono H, Shoumura S, Emura S. Ultrastructure of the parathyroid gland. Histol Histopath 1990;5: 95–112.

    CAS  Google Scholar 

  15. Kukreja SC, Johnson PA, Ayala G, Banerjee P, Bowser EN, Hargis GK, Williams GA. Role of calcium and beta-adrenergic system in control of parathyroid hormone secretion. Proc Soc Exp Biol Med 1976;151: 326–8.

    PubMed  CAS  Google Scholar 

  16. Wideman RFJ. Innervation of the parathyroid in the European starling (Stunus vulgaris). J Morphol 1980;166: 65–80.

    Article  PubMed  Google Scholar 

  17. Preventive and Rehabilitative Exercise Committee of the American College of Sports Medicine. Guidelines for Exercise Testing and Prescription. Fourth edition. Philadelphia: Lea & Febiger, 1991.

    Google Scholar 

  18. Gordon CL, Webber CE. Body composition and bone mineral distribution during growth in females. Can Assoc Radiol J 1993;44: 112–6.

    PubMed  CAS  Google Scholar 

  19. Sowers MF, Kshirsager A, Crutchfield MM, Updike S. Joint influence of fat and lean body composition compartments on femoral bone mineral density in premenopausal women. Am J Epidemiol 1992;136: 257–65.

    PubMed  CAS  Google Scholar 

  20. Compston JE, Bhambhani M, Laskey MA, Murphy S, Khaw KT. Body composition and bone mass in post-menopausal women. Clin Endocrinol 1992;37: 426–31.

    Article  CAS  Google Scholar 

  21. Reid IR, Ames R, Evans MC, Sharpe S, Gamble G, France JT, Lim TM, Cundy TF. Determinants of total body and regional bone mineral density in normal postmenopausal women—a key role for fat mass. J Clin Endoclinol Metab 1992;75: 45–51.

    Article  CAS  Google Scholar 

  22. Reid IR, Evans MC, Ames GNR. Volumetric bone density of the lumbar spine is related to fat mass but not lean mass in normal postmenopausal women. Osteoporosis Int 1994;4: 362–7.

    Article  CAS  Google Scholar 

  23. Bevier WC, Wiswell RA, Pyka, G Kozak K, Newhall KM, Marcus R. Relationship of body composition, muscle strength, and aerobic capacity to bone mineral density in older men and women. J Bone Miner Res 1989;4: 421–32.

    PubMed  CAS  Google Scholar 

  24. Sakamoto Y, Satou T, Aikyou M. Evaluation of body fat by bioimpedance analysis (Japanese). Jpn J Obese Soc 1992; Suppl: 279-80.

  25. Brozek J, Grande F, Anderson JT, Keys A. Densitometric analysis of body composition: revision of some quantitative assumptions. Ann NY Acad Sci 1963;110: 113–40.

    Article  PubMed  CAS  Google Scholar 

  26. Svendsen O, Hassager C, Skodt V, Christiansen C. Impact of soft tissue on in vivo accuracy of bone mineral measurements in the spine, hip, and forearm: a human cadaver study. J Bone Miner Res 1995;10: 868–73.

    Article  PubMed  CAS  Google Scholar 

  27. Minaguchi H, Gorai I, Taga M, Nakayama M, Taguchi Y. Measurement of bone mineral density of radius by DTX-200 (Japanese). J Kanagawa Jpn Gynecol Soc 1995;32: 12–6.

    Google Scholar 

  28. Ljunghall S, Joborn H, Benson L, Fellström B,Wide L, Å Kerström G. Effects of physical exercise on serum calcium and parathyroid hormone. Eur. J. Clin Invest 1984;14: 469–73.

    Article  PubMed  CAS  Google Scholar 

  29. O’Neill ME, Wilkinson M, Robinson BG, McDowall DB, Cooper KA, Mihailidou AS, Frewin DB, Clifton-Bligh P, Hunyor SN. The effects of exercise on circulating immunoreactive calcitonin in men. Horm Metab Res 1990;22: 546–50.

    Article  PubMed  CAS  Google Scholar 

  30. Salvesen H, Johansson AG, Foxdal P, Wide L, Piehl-Aulin K, Ljunghall S. Intact serum parathyroid hormone levels increase during running exercise in well-trained men. Calcif Tissue Int 1994;54: 256–61.

    Article  PubMed  CAS  Google Scholar 

  31. Vora NM, Kukreia SC, York PA, Bowser EN, Hargis GK, Williams GA. Effect of exercise on serum calcium and parathyroid hormone. J Clin Endoclinol Metab 1983;57: 1067–9.

    CAS  Google Scholar 

  32. Takada H, Washino K, Iwata H. Risk factors for low bone mineral density in females — The effect of lean body mass—. Prev Med 1997;26: 633–8.

    Article  PubMed  CAS  Google Scholar 

  33. Pitkin RM, Reynolds WA, Williams GA, Hargis GK. Calcium-regulating hormones during the menstual cycle. J Clin Endocrinol Metab 1978;47: 626–32.

    PubMed  CAS  Google Scholar 

  34. Buchanan JR, Santen RJ, Cavaliere A, Cauffman SW, Greer RB, Demers LM. Interaction between parathyroid hormone and endogenous estrogen in normal women. Metabolism 1986;35: 489–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takada, H., Washino, K., Hanai, T. et al. Response of parathyroid hormone to exercise and bone mineral density in adolescent female athletes. Environ Health Prev Med 2, 161–166 (1998). https://doi.org/10.1007/BF02931695

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931695

Key words

Navigation