Skip to main content
Log in

The impact of acrylonitrile and bioaugmentation on the biodegradation activity and bacterial community structure of a topsoil

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The analysis of the bacterial community within the soil using DGGE showed acrylonitrile (ACN) could lead to the selection of significantly similar communities. Moreover,Rhodococcus sp. AJ270 was successfully established in the soil community. High GC G+-bacteria also responded positively to ACN addition. Bioaugmentation or carbon addition had no impact on the rate or degree of ACN degradation. ACN could be readily degraded by the soil bacteria, however, the community structure was significantly affected by its addition as well as by the addition of carbon orRhodococcus sp. AJ270. The bioaugmentation of the soil with this strain was successful, in that the organism became established within the community. ACN addition to a soil produces statistically significant changes in the bacterial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACN:

acrylonitrile

CFU:

colony-forming unit(s)

DGGE:

denaturing gradient gel electrophoresis

PBS:

phosphate-buffered saline

References

  • Alfani F., Cantarella M., Spera A., Viparelli P.: Operational stability ofBrevibacterium imperialis CBS 489-74 nitrile hydratase.J.Mol.Cat.B: Enz. 11, 687–697 (2001).

    Article  CAS  Google Scholar 

  • Altschul S.E., Madden T.L., Schaffer A.A., Zhang J.H., Zhang Z., Miller W., Lipman D.L.: Gapped BLAST and PSL-BLAST a new generation of protein database search programs.Nucl.Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Aulenta F., Bianchi A., Majone M., Papini M.P., Potalivo M., Tandoi V.: Assessment of natural or enhancedin situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: a microcosm study.Environ.Internat. 31, 185–190 (2003).

    Article  Google Scholar 

  • Baxter J., Cummings S.P.: The impact of bioaugmentation on metal cyanide degradation and soil bacteria community structure.Biodegraation, in press (2006).

  • Blakey A.J., Colby J., Williams E., O’Reilly C.: Regio- and stereo-specific nitrile hydrolysis by the nitrile hydratase fromRhodococcus AJ270.FEMS Microbiol.Lett. 129, 57–62 (1995).

    CAS  Google Scholar 

  • Brandao P.F.B., Clapp J.P., Bull A.T.: Discrimination and taxonomy of geographically diverse strains of nitrile-metabolizing actinomycetes using chemometric and molecular sequencing techniques.Environ.Microbiol. 4, 262–276 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Cunningham C.J., Ivshina I.B., Lozinsky V.I., Kuyukina M.S., Philip J.C.: Bioremediation of diesel-contaminated soil by microorganisms immobilized in polyvinyl alcohol.Internat.Biodeter.Biodegr. 54, 167–174 (2004).

    Article  CAS  Google Scholar 

  • Deshkar A., Dhamorikar N., Godbole S., Krishnamurthi K., Saravanadevi S., Vijay R., Kaul S., Chakrabarti T.: Bioremediation of soil contaminated with organic compounds with special reference to acrylonitrile.Annal.Chim. 93, 729–737 (2003).

    CAS  Google Scholar 

  • Dhillon J.K., Shivaraman N.: Biodegradation of cyanide compounds by aPseudomonas species (S1).Can.J.Microbiol. 45, 201–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Donberg P.A., Odelson D.A., Klecka G.M., Markham D.A.: Biodegradation of acrylonitrile in soil.Environ.Toxicol.Chem. 11, 1583–1594 (1992).

    Article  CAS  Google Scholar 

  • Drobnica L’., Majtán V., Šturdík E., Miko M.: Effect of 2,3-dinitrilo-1,4-dithia-9,10-anthraquinone onMycobacterium smegmatis.Folia Microbiol. 25, 403–411 (1980).

    Article  CAS  Google Scholar 

  • Hartman S., Smits J.P., Van de Werf M.J., Volkering F., de Bont J.A.M.: Metabolism of styrene oxide and 2-phenylethanol in the styrene-degradingXanthobacter strain 124X.Appl.Environ.Microbiol. 55, 2850–2855 (1989).

    Google Scholar 

  • Hazardous Substances Data Base (HSDB): U.S. National Library of Medicine: http://toxnet.nlm.nih.gov (2000).

  • Hu H.Y., Fujie K., Nozawa M., Makabe T., Urano K.: Effects of biodegradable substrates and microbial concentration on the acclimation of microbes to acrylonitrile in aerobic submerged biofilter.Water Sci.Technol. 38, 81–89 (1998).

    Article  CAS  Google Scholar 

  • Komeda H., Kobayashi M., Shimizu S.: A novel gene cluster including theRhodococcus rhodochrous JlnhlBA genes encoding a low molecular mass nitrile hydratase (1-NHase) induced by its reaction product.J.Biol.Chem. 271, 15796–15802 (1996).

    Article  CAS  PubMed  Google Scholar 

  • McBride K.E., Kenny J.W., Stalker D.M.: Metabolism of the herbicide bromoxynil byKlebsiella pneumoniae subsp.ozaenae.Appl.Environ.Microbiol. 52, 325–330 (1986).

    CAS  PubMed  Google Scholar 

  • Miller J.M., Gray D.O.: The utilization of nitriles and amides by aRhodococcus species.J.Gen.Microbiol. 128, 1803–1809 (1982).

    CAS  Google Scholar 

  • Munn S.J., Allanou R., Aschberger K., Berthault F., de Bruijn J., Luotamo M., Musset C., O’Connor S., Pakalin S., Paya-Perez A., Pellegrini G., Scheer S., Vegro S.:European Union Risk Assessment Report, Vol. 32. EUR 20857 EN (2004).

  • Muyzer G., Dewaal E.C., Uitterlinden A.G.: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S ribosomal RNA.Appl.Environ.Microbiol. 59, 695–700 (1993).

    CAS  PubMed  Google Scholar 

  • Neužil J., Krištůfek V., Blumauerová M.: Enzymic degradation of bromoxynil by cell-free extracts ofStreptomyces felleus.Folia Microbiol. 33, 349–354 (1988).

    Article  Google Scholar 

  • Olano C., Moss S.J., Brana A.F., Sheridan R.M., Math V., Weston A.J., Mendez C., Leadlay P.F., Wilkinson B., Salas J.A.: Biosynthesis of the angiogenesis inhibitor borrelidin byStreptomyces parvulus Tu4055: insights into nitrile formation.Mol.Microbiol. 52, 1745–1756 (2004).

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly C., Turner P.D.: The nitrilase family of CN hydrolyzing a enzymes — a comparative study.J.Appl.Microbiol. 95, 1161–1174 (2003).

    Article  PubMed  Google Scholar 

  • Reyes G.F., Corbett D., Benz F.W., Doyle R.J.: Aerylonitrile induces autolysisBacillus subtilis.FEMS Microbiol.Lett. 182, 255–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Roach P.C.J., Ramsden D.K., Hughes J., Williams P.: Biocatalytic scrubbing of gaseous acrylonitrile usingRhodococcus rubber immobilized on synthetic silicone polymer (ImmobaSil™) rings.Biotechnol.Bioeng. 85, 450–455 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Rowan A.K., Snape J.R., Fearnside D., Barer M.R., Curtis T.P., Head I.M.: Composition and diversity of ammonia-oxidizing bacterial communities in wastewater treatment reactors of different design treating identical wastewater.FEMS Microbiol.Ecol. 43, 195–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Sanna P., Carta A., Nikookar M.E.R.: Synthesis and antitubercular activity of 3-aryl substituted-2-(1H(2H)benzotriazol-1(2)-yl)-acrylonitriles.Eur.J.Med.Chem. 35, 535–543 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Saroja N., Shamala T.R., Tharanathan R.N.: Biodegradation of starch-γ-polyacrylonitrile, a packaging material byBacillus cereus.Process Biochem. 36, 119–125 (2000).

    Article  CAS  Google Scholar 

  • Simon M.A., Bonner J.S., Page C.A., Townsend R.T., Mueller D.C., Fuller C.B., Autenrieth R.L.: Evaluation of two commercial bioaugmentation products for enhanced removal of petroleum from a wetland.Ecol.Eng. 22, 263–277 (2004).

    Article  Google Scholar 

  • Singh S.K., Gurusiddaiah S., Whalen J.W.: Treponemycin, a nitrile antibiotic active againstTreponema hyodysenteriae.Antimicrob.Agent Chemother. 27, 239–245 (1985).

    CAS  Google Scholar 

  • Vejvoda V., Kaplan O., Klozova J., Masák J., Čejková A., Jirků V., Stloukal R., Martinkova L.: Mild hydrolysis of nitriles byFusarium solam strain OI.Folia Microbiol. 51, 251–256 (2006).

    Article  CAS  Google Scholar 

  • Venosa A.D., Suidan M.T., Wrenn B.A., Stroheimer K.L., Haines J.R., Eberhart B.L., King D., Holder E.: Bioremediation of an experimental oil spill on the shoreline of Delaware Bay.Environ.Sci.Technol. 30, 1764–1775 (1996).

    Article  CAS  Google Scholar 

  • Vezzuli L., Pruzzo C., Fabiano M.: Response of the bacterial community toin situ bioremediation of organic-rich sediments.Marine Poll.Bull. 49, 740–751 (2004).

    Article  Google Scholar 

  • Wyatt J.M., Knowles C.J.: Microbial degradation of acrylonitrile waste effluents: the degradation of effluents and condensates from the manufacture of acrylonitrile.Internat.Biodet.Biodegr. 35, 227–248 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Cummings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, J., Garton, N.J. & Cummings, S.P. The impact of acrylonitrile and bioaugmentation on the biodegradation activity and bacterial community structure of a topsoil. Folia Microbiol 51, 591–597 (2006). https://doi.org/10.1007/BF02931624

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931624

Keywords

Navigation