Skip to main content
Log in

The role of Mn-dependent peroxidase in dye decolorization by static and agitated cultures ofIrpex lacteus

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Dye decolorization capacity of two white-rot fungi,Irpex lacteus andPhanerochaete chrysosporium, was compared in N-limited liquid cultures. The agitated cultures showed lower ability to decolorize azo dyes Reactive Orange 16 and Naphthol Blue Black than static cultures. Similar effect was also observed with other structurally different synthetic dyes. The effect of surfactants on the decolorization process is discussed. A significant increase in the Reactive Orange 16 decolorization by the agitatedI. lacteus cultures was observed after adding 0.1% Tween 80, following a higher Mn-dependent peroxidase production. Thein vitro dye decolorization using the purified enzyme proved its decolorization ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BPB:

Bromophenol Blue

CSB:

Chicago Sky Blue

CuP:

copper(II) phthalocyanine

DB3:

Disperse Blue 3

DMAB:

dimethylamine-borane

LiP:

lignin peroxidases

MB:

Methylene Blue

MBTH:

3-methyl-2-benzothiazolinone hydrazone

MnP:

Mn-dependent peroxidases

NBB:

Naphthol Blue Black

RBBR:

Remazol Brilliant Blue R

RO16:

Reactive Orange 16

References

  • Bourbonnais R., Paice M.G.: Substrate range of veratryl alcohol oxidase and phenol oxidase from white rot fungi.Abstr.Pap.Amer.Chem.Soc. 199, 38 (1990).

    Google Scholar 

  • Campos R., Kandelbauer A., Robra K.H., Cavaco-Paulo A., Gubitz G.M.: Indigo degradation with purified laccases fromTrametes hirsuta andSelerotium rolfsii.J.Biotechnol. 89, 131–139 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Chivukula M., Spadaro J.T., Renganathan V.: Lignin peroxidase-catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides.Biochemistry 34, 7765–7772 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Claus H., Faber G., König H.: Redox-mediated decolorization of synthetic dyes by fungal laccases.Appl.Microbiol.Biotechnol. 59, 672–678 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Couto S.R., Rivela I., Muñoz M.R., Sanroman A.: Stimulation of ligninolytic enzyme production and the ability to decolourise Poly R-478 in semi-solid state cultures ofPhancrochaete chrysosporium.Biores.Technol. 74, 159–164 (2000).

    Article  CAS  Google Scholar 

  • Hammel K.E., Kapich A.N., Jensen K.A., Ryan Z.C.: Reactive oxygen species as agents of wood decay by fungi.Enzyme Microb.Technol. 30, 445–453 (2002).

    Article  CAS  Google Scholar 

  • Harazono K., Watanabe Y., Nakamura K.: Decolorization of azo dye by the white-rot basidiomycetePhanerochaete sordida and by its manganese peroxidase.J.Biosci.Bioeng. 95, 455–459 (2003).

    CAS  PubMed  Google Scholar 

  • Heinfling A., Martinez M.J., Martinez A.T., Bergbauer M., Szewzyk U.: Transformation of industrial dyes by manganese peroxidases fromBjerkandera adusta andPleurotus eryngii in a manganese-independent reaction.Appl.Environ.Microbiol. 64, 2788–2793 (1998).

    CAS  PubMed  Google Scholar 

  • Kasinath A., Novotný Č., Svobodová K., Patel K.C., Šašek V.: Decolorization of synthetic dyes byIrpex lacteus in liquid cultures and packed-bed bioreactor.Enzyme Microb.Technol. 32, 167–173 (2003).

    Article  CAS  Google Scholar 

  • Kim H.Y., Song H.G.: Transformation and mineralization of 2,4,6-trinitrotoluene by the white rot fungusIrpex lacteus.Appl.Microbiol.Biotechnol. 61, 150–156 (2003).

    CAS  PubMed  Google Scholar 

  • Maximo C., Costa-Ferreira M.: Decolourisation of reactive textile dyes byIrpex lacteus and lignin modifying enzymes.Process Biochem. 39, 1475–1479 (2004).

    Article  CAS  Google Scholar 

  • Mielgo I., Lopez C., Moreira M.T., Feijoo G., Lema J.M.: Oxidative degradation of azo dyes by manganese peroxidase under optimized conditions.Biotechnol.Progr. 19, 325–331 (2003).

    Article  CAS  Google Scholar 

  • Moen M.A., Hammel K.E.: Lipid-peroxidation by the manganese peroxidase ofPhanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus.Appl.Environ.Microbiol. 60, 1956–1961 (1994).

    CAS  PubMed  Google Scholar 

  • Moldes D., Couto S.R., Cameselle C., Sanroman M.A.: Study of the degradation of dyes by MnP ofPhanerochaete chrysosporium produced in a fixed-bed bioreactor.Chemosphere 51, 295–303 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Novotný Č., Svobodová K., Erbanová P., Cajthaml T., Kasinath A., Lang E., Šašek V.: Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate.Soil Biol.Biochem. 36, 1545–1551 (2004).

    Article  Google Scholar 

  • Ollikka P., Harjunpaa T., Palmu K., Mantsala P., Suominen I.: Oxidation of Crocein Orange G by lignin peroxidase isoenzymes kinetics and effect of H2O2.Appl.Biochem.Biotechnol. 75, 307–321 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Paszczyński A., Crawford R.L.: Potential for bioremediation of xenobiotic compounds by the white rot fungusPhanerochaete chrysosporium.Biotechnol.Progr. 11, 368–379 (1995).

    Article  Google Scholar 

  • Pease E.A., Tien M.: Heterogeneity and regulation of manganese peroxidases fromPhanerochaete chrysosporium.J.Bacteriol. 174, 3532–3540 (1992).

    CAS  PubMed  Google Scholar 

  • Pointing S.B.: Feasibility of bioremediation by white-rot fungi.Appl.Microbiol.Biotechnol. 57, 20–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich M.L., Bolobova A.V., Vasil’chenko L.G.: Fungal decomposition of natural aromatic structures and xenobiotics: a review.Appl.Biochem.Microbiol. 40, 1–17 (2004).

    Article  CAS  Google Scholar 

  • Rothschild N., Novotný Č., Šašek V., Dosoretz C.G.: Ligninolytic enzymes of the fungusIrpex lacteus (Polyporus tulipiferae): isolation and characterization of lignin peroxidase.Enzyme Microb.Technol. 31, 627–633 (2002).

    Article  CAS  Google Scholar 

  • Saparrat M.C.N., Guillén F.: Ligninolytic ability and potential biotechnology applications of the South American fungusPleurotus laciniatocrenatus.Folia Microbiol. 50, 155–160 (2005).

    Article  CAS  Google Scholar 

  • Schliephake K., Mainwaring D.E., Lonergan G.T., Jones I.K., Baker W.L.: Transformation and degradation of the bisazo dye Chicago Sky Blue by a purified laccase fromPycnoporus cinnabarinus.Enzyme Microb.Technol. 27, 100–107 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Selvam K., Swaminathan K., Chae K.S.: Decolourization of azo dyes and a dye industry effluent by a white rot fungusThelephora sp.Biores.Technol. 88, 115–119 (2003).

    Article  CAS  Google Scholar 

  • Shin K.W.: The role of enzymes produced by white-rot fungusIrpex lacteus in the decolorization of the textile industry effluent.J.Microbiol. 42, 37–41 (2004).

    CAS  PubMed  Google Scholar 

  • Shin K.S., Kim Y.H., Lim J.S.: Purification and characterization of manganese peroxidase of the white-rot fungusIrpex lacteus.J.Microbiol. 43, 503–509 (2005).

    CAS  PubMed  Google Scholar 

  • Soares G.M.B., Costa-Ferreira M., de Amorim M.T.P.: Decolorization of an anthraquinone-type dye using a laccase formulation.Biores.Technol. 79, 171–177 (2001).

    Article  CAS  Google Scholar 

  • Swamy J., Ramsay J.A.: The evaluation of white rot fungi in the decoloration of textile dyes.Enzyme Microb.Technol. 24, 130–137 (1999).

    Article  CAS  Google Scholar 

  • Tien M., Kirk T.K.: Lignin peroxidase fromPhanerochaete chrysosporium.Meth.Enzymol. 161, 238–248 (1988).

    Article  CAS  Google Scholar 

  • Urek R.O., Pazarlioglu N.K.: Production and stimulation of manganese peroxidase by immobilizedPhanerochaete chrysosporium.Process Biochem. 40, 83–87 (2005).

    Article  CAS  Google Scholar 

  • Vyas B.R.M., Bakowski S., Šašek V., Matucha M.: Degradation of anthracene by selected white-rot fungi.FEMS Microbiol.Ecol. 14, 65–70 (1994).

    Article  CAS  Google Scholar 

  • Wang Y.X., Yu J.: Adsorption and degradation of synthetic dyes on the mycelium ofTrametes versicolor.Water Sci.Technol. 38, 233–238 (1998).

    CAS  Google Scholar 

  • Young L., Yu J.: Ligninase-catalyzed decolorization of synthetic dyes.Water Res. 31, 1187–1193 (1997).

    Article  CAS  Google Scholar 

  • Zheng Z.M., Obbard J.P.: Effect of non-ionic surfactants on elimination of polycyclic aromatic hydrocarbons (PAHs) in soil-slurry byPhanerochaete chrysosporium.J.Chem.Technol.Biotechnol. 76, 423–429 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Svobodová.

Additional information

The work was supported by the projects no. IAA 602 0411 of theGrant Agency of the Academy of Sciences of the Czech Republic, COST no. 1P 04O C8 47.002 and by theInstitutional Research Concept no. AV 0Z 5020 0510.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svobodová, K., Erbanová, P., Sklenář, J. et al. The role of Mn-dependent peroxidase in dye decolorization by static and agitated cultures ofIrpex lacteus . Folia Microbiol 51, 573–578 (2006). https://doi.org/10.1007/BF02931622

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931622

Keywords

Navigation