Skip to main content
Log in

Motility inOscillatoria salina as affected by different factors

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

All 3–10-d-oldOscillatoria salina filaments glide with the speed of 323–330 µm/min (BG 11 medium, pH 7.5, 21±2 °C, continuous light intensity of ≈30 µmol m−2 s−1) in a culture chamber. However, a time bound progressive decrease in gliding speed and in percentage of gliding filaments occurred, depending upon the severity of different stress factors studied,viz. water stress (2–8 % agarized media, liquid media with 0.2–1 mol/L NaCl, blot-dryness of filaments for ≥5 min), temperature shock (5, 40 °C for ≥5 min; 35 °C for ≥15 min), darkness and low light intensity (2, 10 µmol m−2 s−1), UV exposure (0.96–3.84 kJ/m2), pH extremes (≤6.5 and ≥9.5), lack of all nutrients from liquid medium (double distilled water), presence of ‘heavy’ metals (1, 25 ppm Fe, Cu, Zn, Ni, Co, Hg) or organic substances in liquid medium (25, 250 ppm 2,4-D, captan, urea, DDT, thiourea). This feature of the alga (i.e. reduction in speed and percentage of gliding filaments depending upon severity of stress conditions) may thus be suggested to be used in assessing water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal S.C., Pal U.: Viability of dried vegetative cells or filaments, survivability and or reproduction under water and light stress, and following heat and UV exposure in some blue-green and green algae.Folia Microbiol. 48, 501–519 (2003).

    Article  CAS  Google Scholar 

  • Agrawal S.C., Singh V.: Viability of dried vegetative trichomes, formation of akinetes and heterocysts and akinete germination in some blue-green algae under water stress.Folia Microbiol. 44, 411–418 (1999).

    Article  CAS  Google Scholar 

  • Agrawal S.C., Singh V.: Viability of dried filaments, survivability and reproduction under water stress, survivability following heat and UV exposure inLyngbya martensiana, Oscillatoria agardhii, Nostoc calcicola, Hormidium fluitans, Spirogyra sp. andVaucheria geminata.Folia Microbiol. 47, 61–67 (2002).

    Article  CAS  Google Scholar 

  • Amsler C.D., Shelton K.L., Britton C.J., Spencer N.Y., Greer S.P.: Nutrients do not influence swimming behavior or settlement rates ofEctocarpus siliculosu (Phaeophyceae) spores.J.Phycol. 35, 239–244 (1999).

    Article  Google Scholar 

  • Bebout B.M., Garcia-Pichel F.: UV-B induced vertical migrations of cyanobacteria in a microbial mat.Appl.Environ.Microbiol. 61, 4215–4222 (1995).

    CAS  PubMed  Google Scholar 

  • Bertrand J.: Movements des diatomees. II. Synthese des mouvements.Crytogamie Algol. 13, 49–71 (1992).

    Google Scholar 

  • Burkholder P.R.: Movement in the cyanophyceae. The effect of pH upon movement inOscillatoria.J.Gen.Physiol. 16, 875–881 (1933).

    Article  CAS  PubMed  Google Scholar 

  • Burkholder P.R.: Movement in the cyanophyceae.Quart.Rev.Biol. 9, 438–459 (1934).

    Article  Google Scholar 

  • Castenholz R.W.: The behavior ofOscillatoria terebriformis in hot springs.J.Physcol. 4, 132–139 (1968).

    Article  Google Scholar 

  • Cohn S.A., Disparti N.C.: Environmental factors influencing diatom cell motility.J.Phycol. 30, 818–828 (1994).

    Article  Google Scholar 

  • von Denffer D.: Die planktische Massenkultur pennater Grunddiatomeen.Arch.Mikrobiol. 14, 159–202 (1949).

    Article  Google Scholar 

  • Drews G.: Beiträge zur Kenntnis der phototaktischen Reaktionen der Cyanophyceen.Arch.Protistenk. 104, 389–430 (1959).

    Google Scholar 

  • Drum R.W., Hopkins J.T.: Diatom locomotion, an explanation.Protoplasma 62, 1–33 (1966).

    Article  Google Scholar 

  • El-Mogid M.M.A.: Effects of some pesticides on the growth of blue-green algaSpirulina platensis.Egypt.J.Food Sci. 14, 67–74 (1986).

    Google Scholar 

  • Gajdošová J., Retchrtová E.: Different growth response ofEuglena gracilis to Hg, Cd, Cr and Ni compounds.Fresenius J.Anal.Chem. 354, 641–642 (1996).

    Google Scholar 

  • Garcia-Pichel F., Mechling M., Castenholz R.W.: Diel migrations of microorganisms within a benthic, hypersaline mat community.Appl.Environ.Microbiol. 60, 1500–1511 (1994).

    CAS  PubMed  Google Scholar 

  • Gupta S., Agrawal S.C.: Zoosporangia survival, dehiscence and zoospore formation and motility in the green algaRhizoclonium hieroglyphicum as affected by different factors.Folia Microbiol. 49, 549–556 (2004).

    Article  CAS  Google Scholar 

  • Gupta S., Acrawal S.C.: Motility and survival ofEuglena ignobilis as affected by different factors.Folia Microbiol. 50, 315–322 (2005).

    Article  CAS  Google Scholar 

  • Häder D.P., Häder M.A.: Inhibition of motility and phototaxis in the green flagellateEuglena gracilis by UV-B radiation.Arch.Microbiol. 150, 20–25 (1988).

    Article  Google Scholar 

  • Häder D.P., Häder M.A.: Effect of solar and artificial UV radiation on the motility and pigmentation in the marineCryptomonas maculata.Environ.Exp.Bot. 31, 33–41 (1991).

    Article  Google Scholar 

  • Häder D.P., Watanabe M., Furuya M.: Inhibition of motility in the cyanobacteriumPhormidium uncinatum by solar and monochromatic UV irradiation.Plant Cell Physiol. 27, 887–894 (1986).

    Google Scholar 

  • Halfen L.N., Castenholz R.W.: Gliding in a blue-green alga: a possible mechanism.Nature 225, 1163–1165 (1970).

    Article  CAS  PubMed  Google Scholar 

  • Harder R.: Ueber die Reaktionen freibeweglicher pflanzlicher Organismen auf plötzliche Aenderungen der Lichtintensität.Z.Bot. 12, 353–462 (1920).

    Google Scholar 

  • Harel Y., Ohad I., Kaplan A.: Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust.Plant Physiol. 136, 3070–3079 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Harper M.A.: Locomotion of diatoms and ‘clumping’ of blue-green algae.PhD Thesis. University of Bristol, Bristol 1967.

    Google Scholar 

  • Höfler K.: Aus der Protoplasmatik der Diatomeen.Ber.Deut.Botan.Ges. 58, 97–120 (1940).

    Google Scholar 

  • Hopkins J.T.: Diatom motility: its mechanism and diatom behavior patterns in estuarine mud.PhD Thesis. University of London 1969.

  • Jarosch R.: Zur Gleitbewegung der niederen Organismen.Protoplasma 50, 277–289 (1958).

    Article  Google Scholar 

  • Li Y.G., Gao K.S.: Comparative studies on the effects of hypersaline stress on the physiological and chemical characteristics ofNostoc commune andNostoc sphaeroides. (In Chinese)Acta Hydrobiol.Sinica. 27, 227–231 (2003).

    CAS  Google Scholar 

  • Li Y.G., Gao K.: Photosynthetic physiology and growth as a function of colony size in the cyanobacteriumNostoc sphaeroides.Eur.J.Phycol. 39, 9–15 (2004).

    Article  Google Scholar 

  • Lu C., Vonshak A.: Effects of salinity stress on photosystem II. Function in cyanobacteriaSpirulina platensis cells.Physiol.Plant. 114, 405–413 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Nultsch W.: Phototactic and photokinetic action spectra of the diatomNitzschia communis.Photochem.Photobiol. 14, 705–712 (1971).

    Article  CAS  Google Scholar 

  • Pernauer S.: Das Verhalten einiger Cyanophyceen bei osmotischen Impulsen.Protoplasma 49, 262–295 (1958).

    Article  Google Scholar 

  • Pieper A.: Die Diaphototaxis der Oscillarien.Ber.Deutsch.Bot.Ges. 31, 594–599 (1913).

    Google Scholar 

  • Quesada A., Vincent W.F.: Strategies of adaptation by antarctic cyanobacteria to ultraviolet radiation.Eur.J.Phycol. 32, 335–342, (1997).

    Google Scholar 

  • Reynolds C.S., Oliver R.L., Walsby A.E.: Cyanobacterial dominance: the role of buoyancy regulations in dynamic environments.N.Z.J.Mar.Freshwater Res. 21, 379–390 (1987).

    Article  Google Scholar 

  • Round F.E.: The ecology of benthic algae, pp. 138–184 in D.F. Jackson (Ed.):Algae and Man. Plenum Press, New York 1964.

    Google Scholar 

  • Sarma T.A., Gurpreet Ahuja, Khattar J.I.S.: Nutrient stress causes akinete differentiation in cyanobacteriumAnabaena toraulosa with concomitant increase in nitrogen reserve substances.Folia Microbiol. 49, 557–562 (2004).

    Article  CAS  Google Scholar 

  • Schmid G.: Zur Kenntnis des Oscillarienbewegungen.Flora 111-112, 327–339 (1918).

    Google Scholar 

  • Schmid G.: Das Reizverhalten Künstlicher Teilstücke, die Kontraktilität und das osmotiche Verhalten derOscillatoria jenensis.Jahrber.Wiss.Bot. 62, 328–419 (1923).

    Google Scholar 

  • Stanier R.Y., Kunisawa R., Mandel M., Cohen B.: Purification and properties of a unicellular blue-green alga (orderChroococcales).Bact.Rev. 35, 171–205 (1971).

    PubMed  Google Scholar 

  • Whale G.F., Walsby A.E.: Motility of the cyanobacteriumMicrocoleus chthonoplastes in mud.Brit.Phycol.J. 19, 117–123 (1984).

    Article  Google Scholar 

  • Xyländer M., Braune W.: Influence of nickel on the green algaHaematococcus lacustris Rostafinski in phases of its life cycle.J.Plant Physiol. 144, 86–93 (1994).

    Google Scholar 

  • Zullei N., Benecke G.: Application of a new bioassay to screen the toxicity of polychlorinated biphenyls on blue-green algae.Bull.Environ.Contam.Tovicol. 20, 786–792 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Agrawal, S.C. Motility inOscillatoria salina as affected by different factors. Folia Microbiol 51, 565–571 (2006). https://doi.org/10.1007/BF02931621

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931621

Keywords

Navigation