Skip to main content
Log in

Quantitative aspects of lipopolysaccharide and cytokine requirements to generate nitric oxide in macrophages from LPS-hyporesponsive (Lps d) C3H/HeJ mice

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Due to a gene defect (Lps d), C3H/HeJ mice are known to be hyporesponsive to the immunobiological potential of lipopolysaccharide (LPS). We studied dose requirements for LPS, IFN-γ, and cytokines TNF-α and IL-10 to produce nitric oxide (NO) in peritoneal macrophages (Mφ) from these animals. In contrast to theLps n C3H/HeN mice, high concentrations of LPS (up to 5 µg/mL) or IFN-γ (up to 5 ng/mL) by themselves were unable to activate NO production in C3H/HeJ Mφ. The failure to produce NO could not be overcome by addition ofl-arginine or tetrahydropterin. The high-output NO biosynthesis was dose-dependently stimulated by combined administration of varying concentrations of IFN-γ (50–5000 pg/mL) and LPS (≈1 ng/mL) or to a lesser extent by IFN-γ plus TNF-α or TNF-α/IL-10. Formation of NO in C3H/HeJ Mφ triggered by high concentration of LPS (≈1 µg/mL) given together with IFN-γ (0.2–5 ng/mL) reached the values typical forLPs n C3H/HeN mice. While Mφ from C3H/HeN mice secreted TNF-α, IL-1β, and IL-10 upon contact with a low dose of LPS (1 ng/mL), C3H/HeJ Mφ required high concentration of LPS (5 µg/mL) to enhance the secretion of the cytokines. Yet, this dose remained ineffective to stimulate IFN-γ in Mφ from C3H/HeJ mice. It can be presumed that one of the important factors influencing their deficient ability to form NO is a failure of Mφ to produce IFN-γ upon LPS contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BCG:

bacillus Calmette-Guerin

iNOS:

inducible nitric-oxide synthase (EC 1.14.13.39)

MΦ:

macrophage(s)

IRF:

IFN-γ regulatory factor

References

  • Abdollahi A., Lor K.A., Hoffman-Liebermann B., Liebermann D.: Interferon regulatory factor 1 is a myeloid differentiation primary response gene induced by interleukin 6 and leukemia inhibitory factor: role in growth inhibition.Cell Growth Differ. 2, 401–407 (1991).

    PubMed  CAS  Google Scholar 

  • Barber S.A., Fultz M.J., Salkowski C.A., Vogel S.N.: Differential expression of interferon regulatory factor 1 (IRF-1), IRF-2, and interferon consensus sequence binding protein genes in lipopolysaccharide (LPS)-responsive and LPS-hyporesponsive macrophages.Infect.Immun. 63, 601–608 (1995).

    PubMed  CAS  Google Scholar 

  • Bogdan C., Röllinghof M., Vodovotz Y., Xie Q.W., Nathan C.: Regulation of inducible nitric-oxide synthase in macrophages by cytokines and microbial products, pp. 37–54 inImmunotherapy of Infections (K.N. Masihi, Ed.) Marcel Dekker, New York 1994.

    Google Scholar 

  • Chesrown S.E., Monnier J., Visner G., Nick H.S.: Regulation of inducible nitric-oxide synthase mRNA levels by LPS, IFN-γ, TGF-β, and IL-10 in murine macrophage cell lines and rat peritoneal macrophages.Biochem.Biophys.Res.Commun. 200, 126–134 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Corraliza I.M., Campo M.L., Soler G., Modolell M.: Determination of arginase activity in macrophages: a micromethod.J.Immunol.Meth. 174, 231–235 (1994).

    Article  CAS  Google Scholar 

  • Darnell J.E.J.: Studies of IFN-induced transcriptional activation uncover the Jak-Stat pathway.J.Interferon Cytokine Res. 18, 549–554 (1998).

    PubMed  CAS  Google Scholar 

  • Ding A., Sanchez E., Tancino M., Nathan C.F.: Interaction of bacterial lipopolysaccharide with microtubule proteins.J.Immunol. 148, 2853–2858 (1992).

    PubMed  CAS  Google Scholar 

  • Evans T.J., Strivens E., Carpenter A., Cohen J.: Differences in cytokine response and induction of nitric oxide synthase in endotoxin-resistant and endotoxin-sensitive mice after intravenous Gram-negative infection.J.Immunol. 150, 5033–5040 (1993).

    PubMed  CAS  Google Scholar 

  • Fearns C., Loskutoff D.J.: Role of tumor necrosis factor α in induction of murine CD14 gene expression by lipopolysaccharide.Infect.Immun. 65, 4822–4831 (1997).

    PubMed  CAS  Google Scholar 

  • Fleming S.D., Iandolo J.J., Chapes S.K.: Murine macrophage activation by staphylococcal exotoxins.Infect.Immun. 59, 4049–4055 (1991).

    PubMed  CAS  Google Scholar 

  • Fligger J., Blum J., Jungi T.W.: Induction of intracellular arginase activity does not diminish the capacity of macrophages to produce nitric oxidein vitro.Immunobiology 200, 169–186 (1999).

    PubMed  CAS  Google Scholar 

  • Fujita T., Reis L.F.L., Watanabe N., Kimura Y., Taniguchi T., Vilcek J.: Induction of the transcription factor IRF-1 and interferon-β mRNAs by cytokines and activators of second-messenger pathways.Proc.Nat.Acad.Sci.USA 86, 9936–9940 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Fultz M.J., Barber S.A., Dieffenbach C.W., Vogel S.N.: Induction of IFN-γ in macrophages by lipopolysaccharide.Internat. Immunol. 5, 1383–1392 (1993).

    Article  CAS  Google Scholar 

  • Geller D.A., Nussler A.K., Di Silvo M., Lowenstein C.J., Shapiro R.A., Wang S.C., Simmons R.L., Billiar T.R.: Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric-oxide synthase in hepatocytes.Proc.Nat.Acad.Sci.USA 90, 522–526 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Gorczynski R.M., Rossi-Bergman B., Sullivan B., Chen Z.: Role of reactive nitrogen intermediates in the regulation of allogeneic skin graft survival in mice after portal vein pretransplant transfusion.Transplantation 60, 707–713 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Hampton R.Y., Golenbock D.T., Penman M., Krieger M., Raetz C.R.H.: Recognition and plasma clearance of endotoxin by scavenger receptor.Nature 352, 342–344 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Harada H., Fujita T., Miyamoto M., Kimura Y., Taniguchi T.: Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes.Cell 58, 729–739 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Hibbs J.B., Westenfelder C., Taintor R., Vavrin Z., Kablitz C., Baranowski R.L., Ward J.H., Menlove R.L., McMurry M.P., Kushner J.P., Samlowski W.E.: Evidence for cytokine-inducible nitric oxide synthesis froml-arginine in patients receiving interleukin-2 therapy.J.Clin.Invest. 89, 867–877 (1992).

    Article  PubMed  Google Scholar 

  • Jesch N.K., Dorger M., Enders G., Riede G., Vogelmeie C., Messmer K., Krombach F.: Expression of inducible nitric-oxide synthase and formation of nitric oxide by alveolar macrophages: an interspecies comparison.Environ.Health Perspect. 105, 1297–1300 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kamijo R., Harada H., Matsuyama T., Bosland M., Gerecitano J., Le J., Koh S.I., Kimura T., Green S.J., Mak T.W., Taniguchi T., Vilcek J.: Requirement for transcription factor IRF-1 in NO synthase induction in macrophages.Science 263, 1612–1615 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Kitchens R.L., Ulevitch R.J., Munford R.S.: Lipopolysaccharide (LPS) partial structures inhibit responses to LPS in a human macrophage cell line without inhibiting LPS uptake by a CD14-mediated pathway.J.Exp.Med. 176, 485–494 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Liew F.Y., Li Y., Moss D., Parkinson C., Rogers M.V., Moncada S.: Resistance toLeishmania major infection correlates with the induction of nitric-oxide synthase in murine macrophages.Eur.J.Immunol. 21, 3009–3014 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Ma Y., Seiler K.P., Tai K.F., Yang L., Woods M., Weis J.J.: Outer surface lipoproteins ofBorrelia burgdorferi stimulate nitric oxide production by the cytokine-inducible pathway.Infect.Immun. 62, 3663–3671 (1994).

    PubMed  CAS  Google Scholar 

  • Macela A., Stulík J., Hernychová L., Kroča M., Kročová Z., Kovačová H.: The immune response againstFrancisella tularensis live vaccine strain in LPSn and LPSd mice.FEMS Immunol.Med.Microbiol. 13, 235–238 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Mittal J., Dogra N., Dass R., Majumdar S.:In vitro effects of cAMP-elevating agents and glucocorticoid either alone or in combination on the production of nitric oxide, interleukin-12 and interleukin-10 in IFN-γ- and LPS-activated mouse peritoneal macrophages.Folia Microbiol. 48, 709–717 (2002).

    Article  Google Scholar 

  • Morrison D.C., Ryan J.L.: Bacterial endotoxins and host immune response.Adv.Immunol. 28, 293–450 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Muijsers R.B., ten Hacken N.H., Van Ark I., Folkerts G., Nijkamp F.P., Postma D.S.:l-Arginine is not the limiting factor for nitric oxide synthesis by human alveolar macrophagesin vitro.Eur.Respir.J. 18, 667–671 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Müller J.M., Ziegler-Heitbrock H.W.L., Baeuerle P.A.: Nuclear factor κB, a mediator of lipopolysaccharide effects.Immunobiology 187, 233–256 (1993).

    PubMed  Google Scholar 

  • Munford R.S., Hall C.L.: Uptake and deacylation of bacterial lipopolysaccharides by macrophages from normal and endotoxin-hyporesponsive mice.Infect.Immun. 48, 464–473 (1985).

    PubMed  CAS  Google Scholar 

  • Nussler A.K., Geller D.A., Sweetland M.A., Di Silvio M., Billiar T.R., Madariaga J.B., Simmons R.L., Lancaster J.R.: Induction of nitric oxide and its reactions in cultured human and rat hepatocytes stimulated with cytokines plus LPS.Biochem.Biophys.Res.Commun. 194, 826–835 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Ohmori Y., Schreiber R.D., Hamilton T.A.: Synergy between interferon-γ and tumor necrosis factor-α in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor κB.J.Biol.Chem. 272, 14899–14907 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Ohno N., Hashimoto T., Adachi Y., Yadomae T.: Conformation dependency of nitric oxide synthesis of murine peritoneal macrophages by β-glucansin vitro.Immunol.Lett. 52, 1–7 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Oswald I.P., Wynn T.A., Sher A., James S.L.: Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor α required as a costimulatory factor for interferon γ-induced activation.Proc.Nat.Acad.Sci.USA 89, 8676–8680 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Perera P.Y., Chen T.-Y., Morrison D.C., Vogel S.N.: Detection and analysis of the 80 kd lipopolysaccharide receptor in macrophages derived fromLps n andLps d mice.J.Leukocyte.Biol. 51, 501–506 (1992).

    PubMed  CAS  Google Scholar 

  • Pugin J., Heumann D., Tomasz A., Kravchenko V.V., Akamatsu Y., Nishijima M., Glauser M.P., Tobias P.S., Ulevitch R.J.: CD14 is a pattern recognition receptor.Immunity 1, 509–516 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Quershi S.T., Lariviere L., Leveque G., Clermont S., Moore K.J., Gros P., Malo D.: Endotoxin-tolerant mice have mutations in toll-like receptor 4 (Tlr4).J.Exp.Med. 189, 615–625 (1999).

    Article  Google Scholar 

  • Rosendal S., Levisohn S., Gallily R.: Cytokines inducedin vitro byMycoplasma mycoides ssp.mycoides, large colony type.Vet.Immunol.Immunopathol. 44, 269–278 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Sakurai S., Kamachi K., Konda T., Miyajima N., Kohase M., Yamamoto S.: Nitric oxide induction by pertussis toxin in mouse spleen cellsvia γ-interferon.Infect.Immun. 64, 1309–1313 (1996).

    PubMed  CAS  Google Scholar 

  • Santer V., Mastramarino J.H., Lala P.K.: Characterization of lymphocyte subsets in spontaneous mouse mammary tumors and host lymphoid organs.Internat.J.Cancer 25, 159–168 (1980).

    Article  CAS  Google Scholar 

  • Sivo J., Vogel S.N.: IL-10 differentially regulates mRNA expression induced by lipopolysaccharide and interferons in murine peritoneal macrophages.J.Endotoxin Res. 3, 407–414 (1996).

    CAS  Google Scholar 

  • ter Steege J.C.A., van de Ven M.W.C.M., Forget P.P., Brouckaert P., Buurman W.A.: The role of endogenous IFN-γ, TNF-α and IL-10 in LPS-induced nitric oxide release in a mouse model.Cytokine 10, 115–123 (1998).

    Article  PubMed  Google Scholar 

  • Sultzer B.M.: Genetic control of leukocyte responses to endotoxin.Nature 219, 1253–1254 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N., Kawakami T., Taniguchi T.: Recognition DNA sequences of interferon regulatory factor 1 (IRF-1) and IRF-2, regulators of cell growth and the interferon system.Mol.Cell.Biol. 13, 4531–4538 (1993).

    PubMed  CAS  Google Scholar 

  • Thieblemont N., Wright S.D.: Mice genetically hyporesponsive to lipopolysaccharide (LPS) exhibit a defect in endocytic uptake of LPS and ceramide.J.Exp.Med. 185, 2095–2100 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Thomsen L.L., Ching L.L., Joseph W.R., Baguley B.C., Gavin J.B.: Nitric oxide production in endotoxin-resistant C3H HeJ mice stimulated with flavone-8-acetic acid and xanthenone-4-acetic acid analogues.Biochem.Pharmacol. 43, 2401–2406 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Vogel S.N.: The LPS gene: insights into the genetic and molecular basis of LPS responsiveness and macrophage differentiation, pp. 485–513 inTumor Necrosis Factor: The Molecules and Their Emerging Role in Medicine (B. Beutler, Ed.) Raven Press, New York 1992.

    Google Scholar 

  • Vogel S.N., Moore R.N., Sipe J.D., Rosenstreich D.L.: BCG-induced enhancement of endotoxin sensitivity in C3H/HeJ mice.In vivo studies.J.Immunol. 124, 2004–2009 (1980).

    PubMed  CAS  Google Scholar 

  • Weinberg J.B., Misukonis M.A., Shami P.J., Mason S.N., Sauls D.L., Dittman W.A., Wood E.R., Smith G.K., McDonald B., Bachus K.E., Haney A.F., Granger D.L.: Human mononuclear phagocyte inducible nitric-oxide synthase (iNOS): analysis of iNOS mRNA, iNOS protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages.Blood 86, 1184–1195 (1995).

    PubMed  CAS  Google Scholar 

  • Wong P.M.C., Kang A., Chen H., Yuan Q., Fan P., Sultzer B.M., Kan Y.W., Chung S.-W.: LPSd/Ran of endotoxin-resistant C3H/HeJ mice is defective in mediating lipopolysaccharide endotoxin responses.Proc.Nat.Acad.Sci.USA 96, 11543–11548 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Wright S.D., Jong M.T.C.: Adhesion-promoting receptors on human macrophages recognizeEscherichia coli by binding to lipopolysaccharide.J.Exp.Med. 164, 1876–1888 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Wright S.D., Ramos R.A., Tobias P.S., Ulevitch R.J., Mathison J.C.: CD14, a receptor for complex of lipopolysaccharide (LPS) and LPS-binding proteins.Science 249, 1431–1433 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Wurfel M.M., Hailman E., Wright S.D.: Soluble CD14 acts as a shuttle in the neutralization of lipopolysaccharide (LPS) by LPS-binding protein and reconstituted high density lipoprotein.J.Exp.Med. 181, 1743–1754 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Kmoníčková.

Additional information

This work was supported by grant no. 305/03/1470 from theGrant Agency of the Czech Republic. It was performed as part of the research projects of theInstitute of Experimental Medicine no. AV 0Z 500 8914.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kmoníčková, E., Zídek, Z. Quantitative aspects of lipopolysaccharide and cytokine requirements to generate nitric oxide in macrophages from LPS-hyporesponsive (Lps d) C3H/HeJ mice. Folia Microbiol 49, 737–744 (2004). https://doi.org/10.1007/BF02931558

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931558

Keywords

Navigation