Skip to main content
Log in

Effect of antioxidants onSaccharomyces cerevisiae mutants deficient in superoxide dismutases

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

S. cerevisiae strain Δsod1 lacking Cu,Zn-superoxide dismutase and Δsod1Δsod2 mutant lacking both Cu,Zn-SOD and Mn-superoxide dismutase displayed strongly reduced aerobic growth on glucose, glycerol and lactate; Δsod2 deletion had no effect on aerobic growth on glucose and largely precluded growth on glycerol and lactate. The oxygen-induced growth defects and their alleviation by antioxidants depended on growth conditions, in particular on oxygen supply to cells. Under strong aeration, vitamins A and E had a low effect, 100 µmol/L quercetin alleviated the growth defects of all three mutants while β-carotene had no growth-restoring effect. The superoxide producer paraquat inhibited the aerobic growth of all three mutants in a concentration-dependent manner. Low concentrations of antioxidants had no effect on paraquat toxicity while higher concentrations supported the toxic effect of the agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autor A.P.: Biosynthesis of mitochondrial managanese superoxide dismutase inS. cerevisiae.J.Biol.Chem. 257, 2713–2718 (1982).

    PubMed  CAS  Google Scholar 

  • Balzi E., Chen W., Ulaszewski S., Capieaux E., Goffeau A.: The multidrug resistance genePDR1 fromSaccharomyces cerevisiae.J.Biol.Chem. 262, 16871–16879 (1987).

    PubMed  CAS  Google Scholar 

  • Crapo J.C., Oury T., Rabouille C., Slot J.W., Chang L.Y.: Copper zinc superoxide dismutase is primarily a cytosolic protein in human cells.Proc.Nat.Acad.Sci.USA 89, 10405–10409 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I.: Superoxide radical and superoxide dismutases.Ann.Rev.Biochem. 64, 97–112 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Güldener U., Heck S., Fiedler T., Beinhauer J., Hegemann J.H.: A new efficient gene disruption cassette for repeated use in budding yeast.Nucl.Acids Res. 24, 2519–2524 (1996).

    Article  PubMed  Google Scholar 

  • Hang L.Y., Slot J.W., Geuze H.J., Crapo J.D.: Molecular immunochemistry of the Cu,Zn-superoxide dismutase in rat hepatocytes.J.Cell Biol. 107, 2169–2179 (1988).

    Article  Google Scholar 

  • Keller G.A., Warner T.G., Steimer K.S., Hallewell R.A.: Cu,Zn-superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells.Proc.Nat.Acad.Sci.USA 88, 7381–7385 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Krasowska A., Lukaszewicz M., Oswiecimska M., Witek S., Sigler K.: Spontaneous and radical-induced plasma membrane lipid peroxidation in differently oxidant-sensitive yeast species and its suppression by antioxidants.Folia Microbiol.45, 509–514 (2000).

    Article  CAS  Google Scholar 

  • Krasowska A., Stasiuk M., Oswiecimska M., Kozubek A., Bien M., Witek S., Sigler K.: Suppression of radical-induced lipid peroxidation in a model system by alkyl esters of cinnamate quaternary ammonium salts.Z.Naturforsch. C56, 878–885 (2001).

    Google Scholar 

  • Krasowska A., Chmielewska L., Gapa D., Prescha A., Vachová L., Sigler K.: Viability and formation of conjugated dienes in plasma membrane lipids ofSaccharomyces cerevisiae, Schizosaccharomyces pombe, Rhodotorula glutinis andCandida albicans exposed to hydrophilic, amphiphilic and hydrophobie pro-oxidants.Folia Microbiol.47, 145–151 (2002).

    Article  CAS  Google Scholar 

  • Liu X.F., Elashvili I., Gralla E.B., Valentine J.S., Lapinskas P., Culotta V.C.: Yeast lacking superoxide dismutase Isolation of genetic suppressors.J.Biol.Chem. 267, 18298–18302 (1992).

    PubMed  CAS  Google Scholar 

  • Marres C.A.M., Van Loon A.P.G.M., Oudshoorn P., Van Steeg H., Grivell L.A., Slater E.C.: Nucleotide sequence analysis of the nuclear gene coding for manganese superoxide dismutase of yeast mitochondria, a gene previously assumed to code for the Rieske iron sulphur protein.Eur.J.Biochem. 147, 153–161 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Sturtz L.A., Diekert K., Jensen L.T., Lill R., Culotta V.C.: A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localized to the intermembrane space of mitochondria.J.Biol.Chem. 276, 38084–38089 (2001).

    PubMed  CAS  Google Scholar 

  • Trumpower B.L.: The protonmotive Q cycle.J.Biol.Chem. 265, 11409–11412 (1990).

    PubMed  CAS  Google Scholar 

  • Wach A., Brachat A., Rebischung C., Steiner S., Pokorni K., Heesen S., Philippsen P.: PCR-based gene targeting inSaccharomyces cerevisiae.Meth.Microbiol. 26, 67–81 (1998).

    Article  Google Scholar 

  • Wei J.-P.J., Srinivasan C., Han H., Valentine J.S., Gralla E.B.: Evidence for a novel role of copper-zinc superoxide dismutase in zine metabolism.J.Biol.Chem. 276, 44798–44803 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Westerbeek-Marres C.A.M., Moore M.M., Autor A.P.: Regulation of manganese superoxide dismutase inSaccharomyces cerevisiae. The role of respiratory chain activity.Eur.J.Biochem. 174, 611–620 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K., Niki E.: Interaction of Q-tocopherol with iron: antioxidant and prooxidant effects of tocopherol in the oxidation of lipids in aqueous dispersions in the presence of iron.Biochim.Biophys.Acta 95, 19–23 (1988).

    Google Scholar 

  • Zhang L., Yu L., Yu C.-A.: Generation of superoxide anion by succinate-cytochrome-c reductase from bovine heart mitochondria.J.Biol.Chem. 273, 33972–33976 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Krasowska.

Additional information

The work was supported by thePolish State Committee for Scientific Research (KBN) grant 5PO 6A 02319, theGrant Agency of the Academy of Sciences of the Czech Republic (grant S5020202),Ministry of Education, Youth and Sports of the Czech Republic (grants CZE 01-032 and ME577), theInstitutional Research Project AV 0Z 502 0903 and grant 23/40 of theCzech-Polish Treaty on Scientific and Scientific-Technical Cooperation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasowska, A., Dziadkowiec, D., Łukaszewicz, M. et al. Effect of antioxidants onSaccharomyces cerevisiae mutants deficient in superoxide dismutases. Folia Microbiol 48, 754–760 (2003). https://doi.org/10.1007/BF02931509

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931509

Keywords

Navigation