Advertisement

Folia Microbiologica

, Volume 50, Issue 5, pp 457–463 | Cite as

Co-inoculation ofBorrelia afzelii with tick salivary gland extract influences distribution of immunocompetent cells in the skin and lymph nodes of mice

  • J. Severinová
  • J. Salát
  • Z. Kročová
  • J. Řezníčková
  • H. Demová
  • H. Horká
  • J. Kopecký
Article

Abstract

The impact ofIxodes ricinus salivary gland extract (SGE) on inflammatory changes in the skin and draining lymph nodes of mice, elicited by the infection with the important human pathogen,B. afzelii, was determined using flow cytometry. SGE injected together with spirochetes reduced the numbers of leukocytes and γδ-T lymphocytes in infected epidermis at early time-points post infection. In draining lymph nodes, the anti-inflammatory effect of SGE was manifested by the decrease of total cell count compared with that in mice treated with inactivated SGE. Changes in subpopulations of immunocompetent cells apparently reflected the effect of SGE on the proliferation of spirochetes in the host. The significance of tick saliva anti-inflammatory effect for saliva activated transmission ofB. afzelii is shown.

Keywords

Drain Lymph Node Infected Group Borrelia Burgdorferi Immunocompetent Cell Salivary Gland Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

BP

band pass

FACS

fluorescein-activated cell sorter

FCS

fetal calf serum

FITC

fluorescein isothiocyanate

PBS

phosphate-buffered saline

p.i.

post infection

PMNs

polymorphonuclear cells

RPE

rhodamine-phycoerythrin

SAT

saliva-activated transmission

SGE

salivary gland extract

TCR

T-cell receptor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseev N., Chunikhin S.P., Rukhkyan M.Y., Stefutkina L.F.: Possible role ofIxodidae salivary gland substrate as an adjuvant enhancing arbovirus transmission.Med.Parazitol. 1, 28–31 (1991).Google Scholar
  2. Bloom W.H.: γδ-T cells andMycobacterium tuberculosis.Microbes Infect. 1, 187–195 (1999).CrossRefGoogle Scholar
  3. Chong-Cerillo C., Shang E.S., Blanco D.R., Lovett M.A., Miller J.M.: Immunohistochemical analysis of Lyme disease in the skin of naïve and infection-immune rabbits following challenge.Infect.Immun. 6, 14094–14102 (2001).Google Scholar
  4. Ferreira B.R., Silva J.S.: Successive tick infestations selectively promote a T-helper 2 cytokine profile in mice.Immunology 96, 434–439 (1999).PubMedCrossRefGoogle Scholar
  5. Glatzel A., Entschladen F.T., Zollner M., Kraiczy P., Brade V., Kaufmann R., Janssen O., Lengl-Janssen B., Wesch D., Kabelitz D.: The responsiveness of human Vδ1γ-T cells toBorrelia burgdorferi is largely restricted to synovial-fluid cells from patients with Lyme arthritis.J.Infect.Dis. 186, 1043–1046 (2002).PubMedCrossRefGoogle Scholar
  6. Hajnická V., Kocáková P., Slovák M., Labuda M., Fuchsberger N., Nuttall P.A.: Inhibition of the antiviral action of interferon by tick salivary gland extract.Parasite Immunol. 22, 201–206 (2000).PubMedCrossRefGoogle Scholar
  7. Hiromatshu K., Yoshikai Y., Matsuzaki G., Ohga S., Muramori K., Matsumoto K., Bluestone J.A., Nomoto K.: A protective role of γ/δ-T cells in primary infection withListeria monocytogenes in mice.J.Exp.Med. 175, 49–56 (1992).CrossRefGoogle Scholar
  8. Hisaeda H., Nagasawa H., Maeda K., Maekawa Y., Ishikawa H., Ito Y., Good R.A., Kimeno K.: γδ-T cells play an important role in hsp65 expression and in acquiring protective immune responses against infection withToxoplasma gondii.J.Immunol. 155, 244–251 (1995).PubMedGoogle Scholar
  9. Honarvar N., Schaible U.E., Galanos C., Wallich R., Simon M.M.: A 14000 MW lipoprotein and a glycolipid-like structure ofBorrelia burgdorferi induce proliferation and immunoglobulin production in mouse B cells at high frequencies.Immunology 82, 389–396 (1994).PubMedGoogle Scholar
  10. Hume D.A., Robinson A.P., MacPherson G.G., Gordon S.: The mononuclear phagocyte system of the mouse defined by immuno-histochemical localization of antigen F4/80. Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs.J.Exp.Med. 158, 1522–1536 (1983).PubMedCrossRefGoogle Scholar
  11. Jameson J., Witherden D., Havran W.L.: T-cell effector mechanisms: γδ and CD1d-restricted subsets.Curr.Opin.Immunol. 15, 349–353 (2003).PubMedCrossRefGoogle Scholar
  12. Jones L.D., Hodgson E., Nuttall P.A.: Enhancement of virus transmission by tick salivary glands.J.Gen.Virol. 70, 1895–1898 (1989).PubMedCrossRefGoogle Scholar
  13. Kabelitz D., Glatzel A., Wesch D.: Antigen recognition by human γδ-T lymphocytes.Internat.Arch.Allergy Immunol. 122, 1–7 (2000).CrossRefGoogle Scholar
  14. Kopecký J., Kuthejlová M.: Suppressive effect ofIxodes ricinus salivary gland extract on mechanisms of natural immunityin vitro.Parasite Immunol. 20, 169–174 (1998).PubMedGoogle Scholar
  15. Kopecký J., Kuthejlová M., Pechová J.: Salivary gland extract fromIxodes ricinus ticks inhibits production of interferon-γ by the upregulation of interleukin-10.Parasite Immunol. 21, 351–356 (1999).PubMedCrossRefGoogle Scholar
  16. Kovář L., Kopecký J., Říhová B.: Salivary gland extract fromIxodes ricinus tick polarizes the cytokine profile toward TH2 and suppresses proliferation of T lymphocytes in human PBL culture.J.Parasitol. 87, 1342–1348 (2001).PubMedCrossRefGoogle Scholar
  17. Kovář L., Kopecky J., Říhová B.: Salivary gland extract fromIxodes ricinus tick modulates the host immune response towards the TH2 cytokine profile.Parasitol.Res. 88, 1066–1072 (2002).PubMedCrossRefGoogle Scholar
  18. Kročová Z., Macela A., Hernychová L., Kroča M., Pechová J., Kopecký J.: Tick salivary gland extract accelerates proliferation ofFranciscella tularensis in the host.J.Parasitol. 89, 14–20 (2003).PubMedCrossRefGoogle Scholar
  19. Kuthejlová M., Pechová J., Braunfuchsová P., Kopecký J.: Effect of salivary gland extract fromIxodes ricinus ticks on the production of various cytokinesin vitro, pp. 165–171 in M. Kazimírová, M. Labuda, P.A. Nuttall (Eds):Proc. 3rd Internat. Conf. Ticks and Tick-borne Pathogens: Into the 21st Century, High Tatra Mountains (Slovakia) 2000. Institute of Zoology SAV, Bratislava (Slovakia) 2000.Google Scholar
  20. Kuthejlová M., Kopecký J., Štěpánová G., Macela A.: Tick salivary gland extract inhibits killing ofBorrelia afzelii spirochetes by mouse macrophages.Infect.Immun. 69, 575–578 (2001).PubMedCrossRefGoogle Scholar
  21. Labuda M., Jones L.D., Williams T., Nuttall P.A.: Enhancement of tick-borne encephalitis virus transmission by tick salivary gland extracts.Med.Vet.Entomol. 7, 193–196 (1993).PubMedCrossRefGoogle Scholar
  22. Ladel H., Blum C., Draher A., Reifenberg K., Kaufmann S.H.: Protective role of γ/δ-T cells and α/β-T cells in tuberculosis.Eur.J.Immunol. 25, 2877–2881 (1995).PubMedCrossRefGoogle Scholar
  23. Mbow M.L., Zeidner N., Gilmore R.D., Dolan M., Piesman J., Titus R.G.: Major histocompability complex class II-independent generation of neutralizing antibodies against T-cell-dependentBorrelia burgdoferi antigens presented by dendritic cells: regulation by NK and γδ-T cells.Infect.Immun. 4, 2407–2415 (2001).CrossRefGoogle Scholar
  24. Mukasa A., Lahn M., Fleming S., Freiberg B., Pflum E., Vollmer M., Kupfer A., O’Brien R., Born W.: Extensive and preferential Fas/Fas ligand-dependent death of γδ-T cells following infection withListeria monocytogenes.Scand.J.Immunol. 56, 233–247 (2002).PubMedCrossRefGoogle Scholar
  25. Nuttall P.A.: Pathogen-tick-host interactions:Borrelia burgdorferi and TBE virus.Zbl.Bakteriol. 289, 492–505 (1999).Google Scholar
  26. Nuttall P.A., Jones L.D.: Non-viremic tick-borne virus transmission: mechanism and significance, pp. 3–6 in F. Dusbábek, V. Bukva (Eds):Modern Acarology. Academia, Prague-SPB Academic Publishing, The Hague 1991.Google Scholar
  27. Paesen C., Adams P.L., Harlos K., Nuttall P.A., Stuart D.I.: Tick histamine-binding proteins: isolation, cloning and three dimensional structure.Mol.Cell 3, 661–671 (1999).PubMedCrossRefGoogle Scholar
  28. Pechová J., Štěpánová G., Kovář L., Kopecký J.: Tick salivary gland extract-activated transmission ofBorrelia afzelii spirochetes.Folia Parasitol. 49, 153–159 (2002).PubMedGoogle Scholar
  29. Ribeiro J.M.C.:Ixodes dammini: salivary anti-complement activity.Exp.Parasitol. 64, 347–353 (1987).PubMedCrossRefGoogle Scholar
  30. Ribeiro J.M.C., Spielman A.:Ixodes dammini: salivary anaphylatoxin inactivating activity.Exp.Parasitol. 62, 292–297 (1986).PubMedCrossRefGoogle Scholar
  31. Ribeiro J.M.C., Weiss J.J., Telford S.R. III: Saliva of the tickIxodes dammini inhibits neutrophil function.Exp.Parasitol. 70, 382–388 (1990).PubMedCrossRefGoogle Scholar
  32. Schoeler G.B., Manweiler S.A., Wikel S.K.:Ixodes scapularis: effects of repeated infestations with pathogen-free nymphs on macrophage and T lymphocyte cytokine responses of BALB/c and C3H/HeN mice.Exp.Parasitol. 92, 239–248 (1999).PubMedCrossRefGoogle Scholar
  33. Schwarzová K., Čižnár I.: Immunochemical analysis of lipopolysaccharide-like component extracted fromBorrelia burgdorferi sensu lato.Folia Microbiol. 49, 625–629 (2004).CrossRefGoogle Scholar
  34. Silberer M., Koszik F., Stingl G., Aberer E.: Downregulation of class II molecules on epidermal Langerhans cells in Lyme borreliosis.Brit.J.Dermatol. 143, 786–794 (2000).CrossRefGoogle Scholar
  35. Štěpánová-Tresová G., Kopecký J., Kuthejlová M.: Identification ofBorrelia burgdorferi sensu stricto,Borrelia garinii andBorrelia afzelii inIxodes ricinus ticks from Southern Bohemia using monoclonal antibodies.Zbl.Bakteriol. 289, 797–806 (1999).Google Scholar
  36. Summers B.A., Straubinger A.F., Jacobson R.H., Chang Y.F., Appel M.J., Straubinger R.K.: Histopathological studies of experimental lyme disease in the dog.J.Comp.Pathol. 133, 1–13 (2005).PubMedCrossRefGoogle Scholar
  37. Vincent M.S., Roessner K., Lynch D., Wilson D., Cooper S.M., Schopp J., Sigal L.H., Budd R.C.: Apoptosis of Fas high CD4+ synovial T cells by borrelia-reactive Fas-ligand (high) γδ-T cells in Lyme arthritis.J.Exp.Med. 184, 2109–2117 (1996).PubMedCrossRefGoogle Scholar
  38. Wikel S.K.: Influence ofDermacentor andersoni infestation on lymphocyte responsiveness to mitogens.Ann.Trop.Med.Parasitol. 76, 627–632 (1982).PubMedGoogle Scholar
  39. Zeidner N.S., Schneider B.S., Nuncio M.S., Gern L., Piesman J.: Coinoculation ofBorrelia spp. with tick salivary gland lysate enhances spirochete load in mice and is tick species-specific.J.Parasitol. 88, 1276–1278 (2002).PubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2005

Authors and Affiliations

  • J. Severinová
    • 1
  • J. Salát
    • 1
  • Z. Kročová
    • 2
  • J. Řezníčková
    • 1
  • H. Demová
    • 1
  • H. Horká
    • 1
  • J. Kopecký
    • 1
  1. 1.Institute of Parasitology, Academy of Sciences of the Czech Republic and Faculty of Biological SciencesUniversity of South BohemiaČeské BudějoviceCzechia
  2. 2.Institute of Radiobiology and ImmunologyPurkyně Medical AcademyHradec KrálovéCzechia

Personalised recommendations