Skip to main content
Log in

Antibacterial activity ofUlva lactuca against methicillin-resistantStaphylococcus aureus (MRSA)

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Thein vitro antimicrobial activity of the marine green algaeUlva lactuca was examined against gram-positive bacteria, gram-negative bacteria, and a fungus. The ethyl-ether extract of algae exhibited a broad-spectrum of antibacterial activity. but not antifungal activity againstCandida albicans. In particular, theU. lactuca extract showed strong activity aganst the bacterium methicillin-resistantStaphylococcus aureus (MRSA). This result confirms the potential use of seaweed extracts as a source of antibacterial compounds or as a health-promoting food for aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turos, E., T. E. Long, M. I. Konaklieva, C. Coates J. Y. Shim, S. Dickey, D. V. Lim, and A. Cannons (2002)N-Thiolated β-lactams: novel antibacterial agents for methicillin-resistantStaphylococcus aureus.Bioorg. Med. Chem. Lett. 12: 2229–2231.

    Article  CAS  Google Scholar 

  2. Jevons, M. P. (1961) “Celbenin”-resistant staphylococci.Br. Med. J. 1: 124–125.

    Article  Google Scholar 

  3. Dickema, D. J., A. Pfaller, and J. Tumidge (2000) Genetic relatedness of multidrug-resistant, methicilline (oxacillin)-resistanceStaphylococcus aureus bloodstream isolates from sentry antimicrobial resistance surveillance centers worldwide.Microb. Drug Resist. 6: 213–221.

    Article  Google Scholar 

  4. European Antimicrobial Resistance Surveilance System (EARSS) (2004)Annual Report EARSS-2003. pp 90–91. Bilthoven, The Netherlands.

  5. Sievert, D. M., M. L. Boulton, and G. Stolman (2002)Staphylococcus aureus, resistance to vancomyein.JAMA 288: 824–825.

    Article  Google Scholar 

  6. Hirmatsu, K., H. Hanaki, T. Ino, K. Kabura, T. Oguri, and F. C. Tenover (1997) Methicillin-resistantStophylococcus aureus clinical strain with reduced vancomycin susceptibility.J. Antimicrob. Chemother. 40: 135–146.

    Article  Google Scholar 

  7. Meyer, B. N., N. R. Ferrigni, J. E. Putnam, L. B. Jacobsen, D. E. Nichols, and J. L. McLaughlin (1982) Brine shrimp: a convenient general bioassay for active plant constituents.Planta Med. 45: 31–34.

    Article  CAS  Google Scholar 

  8. Seo, Y., S.-H. Kang, H.-J. Lee, Y. A. Kim, H. J. Youn. B.-J. Lee, and H. Chung (2006)In vitro screning of seaweed extract on the proliferation of mouse splcen and thymus cell.Biotechnol. Bioprocess Eng. 11 160–163.

    Article  CAS  Google Scholar 

  9. Abdussalam, S. (1990) Drugs from seaweeds.Med. Hypotheses 32: 33–35.

    Article  CAS  Google Scholar 

  10. Sandsdalen, E., T. Haug, K. Stensvag, and O. B. Styrvold (2003) The antibacterial effect of a polyhydroxylated fucophlorethol from the marine brown alga.Fucus vesiculosus.World J. Microbiol. Biotechnol. 19: 777–782.

    Article  CAS  Google Scholar 

  11. Kashiwagi, M., J. S. Mynderse, R. E. Moore, and T. R. Norton (1980) Antineoplastic evaluation of Pacific basin marine algae.J. Pharm. Sci. 69: 735–738.

    Article  CAS  Google Scholar 

  12. Gonzalez, A. G., V. Darias, and E. Estevez (1982) Chemotherapeutic activity of polyhalogenated terpenes from Spanish algae.Planta Med. 44: 44–46.

    Article  CAS  Google Scholar 

  13. Kosovel, V., A. Avanzini, V. Scarcia, and A. Furlani (1988) Algae as possible sources of antitumoral agents: Preliminary evaluation of thein vitro cytostatic activity of crude extracts.Pharmacol. Res. Commun 20: 27–31.

    Article  Google Scholar 

  14. Glombitza, K. W. and M. Koch (1989) Secondary metabolites of pharmaceutical potential. pp. 231–238 In: R. C. Cresswell, T. A. Ress, and N. Shah (eds.)Algal and Cyanobacterial Biotechnology. Longman, UK.

  15. Robles Centeno, P. O. and D. L. Ballantine (1999) Effects of culture conditions on production of antibiotically active metabolites by the marine algaSpyridia filamentosa (Ceramiaceae. Rhodophyta). I. Light.J. Appl. Phycol 11: 217–224.

    Article  Google Scholar 

  16. Hornsey, I. S. and D. Hide (1974) The production of antimicrobia compounds by British marine algae. I. Antibiotic producing marine algae.Br. Phycol. J. 9: 353–361.

    Article  Google Scholar 

  17. Hornsey, I. S. and D. Hide (1976) The production of antimicrobial compounds by British marine algae. II. Seasonal variation in production of antibiotics.Br. Phycol. J. 11: 63–67.

    Article  Google Scholar 

  18. Pesando, D. and B. Caram (1984) Screening of marine algae from the French mediterranean coast for antibacterial and antifungal activity.Bot Mar. 27: 381–386.

    Article  Google Scholar 

  19. Hultmark, D., A. Engstrom, H. Bennich, R. Kapur, and H. G. Boman (1982) Insect immunity: Isolation and structure of cecropin D and four minor antibacterial components fromCercopia pupae.Eur. J. Biochem. 127: 207–217.

    Article  CAS  Google Scholar 

  20. Jo, S.-H., S.-Y. Kwon, D.-S. Park, K.-S. Yang, J.-W. Kim, K.-T. Lee, S.-S. Kwak, and H.-S. Lee (2006) High-yield production of functional human lactoferrin in transgenic cell cultiures of Siberian ginseng (Acanthopanax senticosus).Biotechnol. Bioprocess Eng. 11: 442–448.

    Article  CAS  Google Scholar 

  21. Yoon, Y. C., H. J. Park, N.-K. Lee, and H.-D. Paik (2005) Characterization and enhanced production of enterocin HJ35 byEnterococcus faecium H135 isolated from human skin.Biotechnol. Bioprocess Eng., 10: 296–303.

    Article  CAS  Google Scholar 

  22. Lehrer, R. I., M. Rosenman, S. S. Harwig, R. Jackson, and P. Eisenhauer (1991) Ultrasensitive assays for endogenous antimicrobial polypeptides.J. Immunol. Methods 137: 167–173.

    Article  CAS  Google Scholar 

  23. Zasloff, M. (1987) Magainins, a class of antimicrobial peptides fromXenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor.Proc. Natl. Acad. Sci. USA 84: 5449–5453.

    Article  CAS  Google Scholar 

  24. Zasloff, M., B. Martin, and H. C. Chen (1988) Antimicrobial activity of synthetic magainin peptides and several analogues.Proc. Natl. Acad. Sci. USA 85: 910–913.

    Article  CAS  Google Scholar 

  25. Boman, H. G., I. Nilsson-Faye, K. Paul, and T. Rasmuson, Jr. (1974) Insect immunity. I. Characterization of an inducible cell-free antibacterial reaction in hemolymph ofSamia cynthia Pupae.Infect. Immunol. 10: 136–145.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hwa Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, I.H., Lee, DG., Lee, S.H. et al. Antibacterial activity ofUlva lactuca against methicillin-resistantStaphylococcus aureus (MRSA). Biotechnol. Bioprocess Eng. 12, 579–582 (2007). https://doi.org/10.1007/BF02931358

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931358

Keywords

Navigation