Skip to main content
Log in

Cross-resistance to strobilurin fungicides in mitochondrial and nuclear mutants ofSaccharomyces cerevisiae

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

In yeast the resistance to kresoxim-methyl and azoxystrobin, like the resistance to strobilurin A (mucidin) is under the control of both mitochondrialcob gene and the PDR network of nuclear genes involved in multidrug resistance. The mucidin-resistantmucl (G137R) andmuc2 (L275S) mutants ofSaccharomyces cerevisiae containing point mutations in mtDNA were found to be cross-resistant to kresoximmethyl and azoxystrobin. Cross-resistance to all three strobilurin fungicides was also observed in yeast transformants containing gain-of-function mutations in the nuclearPDR3 gene. On the other hand, nuclear mutants containing disrupted chromosomal copies of thePDR1 andPDR3 genes or thePDR5 gene alone werehypersensitive to kresoxim-methyl, axoxystrobin and strobilurin A. The frequencies of spontaneous mutants selected for resistance either to kresoxim-methyl, azoxystrobin or strobilurin A were similar and resulted from mutations both in mitochondrial and nuclear genes. The results indicate that resistance to strobilurin fungicides, differing in chemical structure and specific activity, can be caused by the same molecular mechanism involving changes in the structure of apocytochromeb and/or increased efflux of strobilurins from fungal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balzi E., Wang M., Leterme S., Van Dyck L., Goffeau A.:PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulatorPDR1.J.Biol.Chem. 269, 2206–2214 (1994).

    PubMed  CAS  Google Scholar 

  • Barlett D.W., Clough J.M., Goldwin J.R., Hall A.A., Hamer M., Parr-Dobrzanski B.: The strobilurin fungicides.Pest.Manag.Sci. 58, 649–662 (2002).

    Article  CAS  Google Scholar 

  • Becker W.E., von Jagow G., Anke T., Steglich W.: Oudemansin, strobilurin A, strobilurin B and myxothiazol: new inhibitors of thebcl segment of the respiratory chain with anE-β-methoxyacrylate system as common structural element.FEBS Lett. 132, 329–333 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Bissinger P.H., Kuchler K.: Molecular cloning and expression of theS. cerevisiae STS1 gene product.J.Biol.Chem. 264, 4180–4186 (1994).

    Google Scholar 

  • Chin K.M., Chavaillaz D., Kaesbohrer M., Staub T., Felsenstein F.G.: Characterizing resistance risk ofErysiphe graminis f.sp.tritici to strobilurins.Crop Protect. 20, 87–96 (2001).

    Article  CAS  Google Scholar 

  • Clough J.M., Godfrey C.R.A.: The strobilurin fungicides, pp. 109–148 in D.H. Hutson, J. Miyamoto (Eds):Fungicidal Activity. Wiley, Chichester (UK) 1998.

    Google Scholar 

  • Delaveau T., Delahodde A., Carvajal E., Šubík J., Jacq C.:PDR3, a new yeast regulatory gene, is homologous toPDR1 and controls the multidrug resistance phenomenon.Mol.Gen.Genet. 178, 603–610 (1994).

    Google Scholar 

  • De Risi J., van den Hazel B., Marc P., Balzi E., Brown P., Jacq C., Goffeau A.: Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants.FEBS Lett. 410, 156–160 (2000).

    Article  Google Scholar 

  • Di Rago J.P., Coppee J.Y., Colson A.M.: Molecular basis for resistance to myxothiazol, mucidin (strobilurin A) and stigmatellin. Cytochromeb inhibitors activity at the center of the mitochondrial ubiquinol-cytochrome-c reductase inSaccharomyces cerevisiae.J.Biol.Chem. 264, 14543–14548 (1989).

    PubMed  Google Scholar 

  • Espinel-Ingroff A., Barchiesi F., Hazen K.C., Martinez-Suarez J.V., Scalise G.: Standardization of antifungal susceptibility testing and clinical relevance.Med.Mycol. 36, 68–78 (1998).

    PubMed  CAS  Google Scholar 

  • Gisi U., Chin K.M., Knapova G., Kung Farberr R., Mohr U., Parisi S., Sierotzki H., Steinfeld U.: Recent developments in elucidated modes of resistance to phenylamide, DMI and strobilurin fungicides.Crop Protect. 19, 863–872 (2000).

    Article  CAS  Google Scholar 

  • Michalková-Papajová D., Obernauerová M., Šubík J.: Role of the PDR gene network in yeast susceptibility to the antifungal antibiotic mucidin.Antimicrob.Agents Chemother. 44, 418–420 (2000).

    Article  PubMed  Google Scholar 

  • Morschhauser J.: The genetic basis of fluconazole resistance development inCandida albicans.Biochim.Biophys.Acta 1578, 240–248 (2002).

    Google Scholar 

  • Nourani A., Papajová D., Delahodde A., Jacq C., Šubik J.: Clustered amino acid substitutions in the yeast transcription regulator Pdr3 increase pleiotropic drug resistance and identify a new central regulatory domain.Mol.Gen.Genet. 256, 397–405 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Sanglard D., Kuchler K., Ischer F., Pagani J.L., Monod M., Bille J.: Mechanisms of resistance to azole antifungal agents inCandida albicans isolates from AIDS patients involve specific multidrug transporters.Antimicrob.Agents Chemother. 39, 2378–2386 (1995).

    PubMed  CAS  Google Scholar 

  • Sanglard D., Ischer F., Monod M., Bille J.. Cloning ofCandida albicans genes conferring resistance to azole antifungal agents — characterization ofCDR2, a new multidrug ABC transporter gene.Microbiology 143, 405–416 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Sanglard D., Odds F.C.: Resistance ofCandida species to antifungal agents: molecular mechanisms and clinical consequences.Lancet Infect.Dis. 2, 73–85 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Sauter H., Steglich W., Anke T.: Strobilurins: evolution of a new class of active substances.Angew.Chem.Internat.Ed. 117, 1328–1349 (1999).

    Google Scholar 

  • Šubík J., Behúň M., Musílek V.: Antibiotic mucidin, a new antimycin A-like inhibitor of electron transport in rat liver mitochondria.Biochem.Biophys.Res.Commun. 57, 17–22 (1974).

    Article  PubMed  Google Scholar 

  • Šubík J., Kováčová V., Takácsová G.: Mucidin resistance in yeast. Isolation, characterization and genetic analysis of nuclear and mitochondrial mucidin-resistant mutants ofSaccharomyces cerevisiae.Eur.J.Biochem. 73, 275–286 (1977).

    Article  PubMed  Google Scholar 

  • Šubík J., Takácsová G.: Genetic determination of ubiquinol-cytochrome-c reductase. Mitochondrial locusmuc3 specifying resistance ofSaccharomyces cerevisiae to mucidin.Mol.Gen.Genet. 161, 99–108 (1978).

    Article  PubMed  Google Scholar 

  • Šubík J., Ulaszewski S., Goffeau A.: Genetic mapping of nuclear mucidin resistance mutations inSaccharomyces cerevisiae. A newpdr locus on chromosome II.Curr.Genet. 10, 665–670 (1986).

    Article  PubMed  Google Scholar 

  • Takácsová G., Šubík J., Kotylak Z.: Localization of mucidin-resistant locusmuc3 on mitochondrial DNA with respect to ubiquinolcytochrome-c reductase deficientbox loci. Locusmuc3 is allelic tobox2.Mol.Gen.Genet. 179, 141–146 (1980).

    Article  PubMed  Google Scholar 

  • Thompson J.R., Register E., Curotto J., Kurtz M., Kelly R.: An improved protocol for the preparation of yeast cells for transformation by electroporation.Yeast 14, 565–571 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Šubík.

Additional information

This work was partially supported by grants from theSlovak Grant Agency VEGA (1/0019/03), agency APVT (51-000502), andEuropean Union (QLK2-CT-2001-002377).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hnátová, M., Gbelská, Y., Obernauerová, M. et al. Cross-resistance to strobilurin fungicides in mitochondrial and nuclear mutants ofSaccharomyces cerevisiae . Folia Microbiol 48, 496–500 (2003). https://doi.org/10.1007/BF02931331

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931331

Keywords

Navigation