Skip to main content
Log in

Lipid analysis of the plasma membrane and mitochondria of brewer’s yeast

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The plasma membrane and mitochondria of bottom fermenting brewer’s yeast obtained as a by-product of industrial beer production were isolated and the lipid fraction was analyzed. The phospholipid content accounted for 78 mg/g protein in the plasma membrane and 59 mg/g protein in the mitochondria. Major phospholipids in both preparations were phosphatidylinositol, phosphatidylcholine and phosphatidyl-ethanolamine but their proportions differed significantly. In the plasma membrane phosphatidy linositol, and in the mitochondria phosphatidylcholine were present in the highest concentration (37 and 30 %, respectively). The main classes of neutral lipids (triacylglycerols, ergosterol, squalene and steryl esters) were twice more abundant in the plasma membrane than in the mitochondria (61 and 33 mg/g protein, respectively). A characteristic of the neutral lipid composition of both organelles was the low content of ergosterol (12 and 7 mg/g protein, respectively) and a high content of squalene (25 and 22 mg/g protein). The main feature of the fatty acid composition of both organelles was the preponderance of saturated fatty acids (78 and 79 %, respectively), among which palmitic acid was the principal one. The most expressed characteristics of lipid fractions of the analyzed plasma membranes and mitochondria, high concentration of squalene and preponderance of saturated fatty acids are the consequences of anaerobic growth conditions. The lack of oxygen had possibly the strongest effect on the lipid composition of the plasma membranes and mitochondria of bottom fermenting brewer’s yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

DMPtdEtn:

dimethylphosphatidylethanolamine

Lyso-PL:

lysophospholipids

PA:

phosphatidic acid

PM:

plasma membrane(s)

PtdEtn:

phosphatidylethanolamine

PtdSer:

phosphatidylserine

TFA:

total FA

TPL:

total PL

CL:

cardiolipin

FA:

fatty acid(s)

MT:

mitochondria

PL:

phospholipid(s)

PtdCho:

phosphatidylcholine

PtdIns:

phosphatidylinostiol

SDS-PAGE:

sodium dodecylsulfate polyacrylamide gel electrophoresis

VLCFA:

very long-chain FA

References

  • Achleitner G., Gaigg B., Krasser A., Kainersdorfer E., Kohlwein S.D., Perktold A., Zellnig G., Daum G.: Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact.Eur.J.Biochem.264, 545–553 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Athenstaedt K., Daum G.: Biosynthesis of phosphatidic acid in the yeastSaccharomyces cerevisiae, pp. 17–28 in H. Dipak, K.D. Salil (Eds):Lipids: Glycerolipid Metabolizing Enzymes. Research Signpost, Kerala (India) 2002.

    Google Scholar 

  • Blagović B., Rupčić J., Mesaric M., Georgiú K., Marić V.: Lipid composition of brewer’s yeast.Food Technol.Biotechnol.39, 175–181 (2001).

    Google Scholar 

  • Broekhuyse R.M.: Phospholipids in tissues of the eye.Biochim.Biophys.Acta152, 307–315 (1968).

    PubMed  CAS  Google Scholar 

  • Cahoon E.B., Mills L.A., Shanklin J.: Modification of the fatty acid composition ofEscherichia coli by coexpression of plant acyl-acyl carrier protein desaturase and ferredoxin.J.Bacteriol.178, 936–939 (1996).

    PubMed  CAS  Google Scholar 

  • Capaldi R.A.: The changing face of mitochondrial research.Trends Biochem.Sci.25, 212–214 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Casey W.M., Rolph C.F., Tomeo M.E., Parks L.W.: Effects of unsaturated fatty acid supplementation on phospholipid and triacylglycerol biosynthesis inSaccharomyces cerevisiae.Biochem.Biophys.Res.Com.193, 1297–1303 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Ciesarova Z., Šmogrovičova D.: A study of ethanol tolerance in yeasts. (In Slovak)Chem.Listy90, 365–370 (1996).

    CAS  Google Scholar 

  • Ciesarová Z., Šmogrovičová D., Dömény Z.: Enhancement of yeast ethanol tolerance by calcium and magnesium.Folia Microbiol.41, 485–488 (1996).

    Article  Google Scholar 

  • Daum G., Vance J.E.: Imports of lipids into mitochondria.Prog.Lipid Res.36, 103–130 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Daum G., Lees N.D., Bard M., Dickson R.: Biochemistry, cell biology and molecular biology of lipids ofSaccharomyces cerevisiae.Yeast14, 1471–1510 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Daum G., Tuller G., Nemec T., Hrastnik C., Balliano G., Cattel L., Milla P., Rocco F., Conzelmann A., Vionnet C., Kelly E.D., Kelly S., Schweizer E., Schüller H.-J., Hojad U., Greiner E., Finger K.: Systematic analysis of yeast strains with possible defects in lipid metabolism.Yeast15, 601–614 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Flegelová H., Chaloupka R., Novotná D., Maláč J., Gášková D., Sigler K., Janderová B.: Changes in plasma membrane fluidity lower the sensitivity ofS. cerevisiae to killer toxin K1.Folia Microbiol.48, 761–766 (2003).

    Article  Google Scholar 

  • Folch J., Lees M., Sloane-Stanley G.H.: A simple method for the isolation and purification of total lipids from animal tissues.J.Biol.Chem.226, 497–509 (1957).

    PubMed  CAS  Google Scholar 

  • Gaigg B., Simbeni R., Hrastnik C., Paltauf F., Daum G.: Characterization of a microsomal subfraction associated with mitochondria of the yeast,Saccharomyces cerevisiae.Biochim.Biophys.Acta1234, 214–220 (1995).

    Article  PubMed  Google Scholar 

  • Grant A.M., Hanson P.K., Malone L., Nichols J.W.: NBD-labeled phosphatidylcholine and phosphatidylethanolamine are internalized by transbilayer transport across the yeast plasma membrane.Traffic2, 37–50 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Haid A., Suissa M.: Immunochemical identification of membrane proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis.Meth.Enzymol.96, 192–205 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Hammond J.R.M.: Yeast growth and nutrition, pp. 77–84 in K. Smart (Ed.):Brewing Yeast Fermentation Performance. Blackwell Science, Oxford (UK) 2000.

    Google Scholar 

  • van den Hazel H.B., Pichler H., do Valle Matta M.A., Leitner E., Goffeau A., Daum G.:PDR16 andPDR17, two homologous genes ofSaccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs.J.Biol.Chem.274, 1934–1941 (1999).

    Article  PubMed  Google Scholar 

  • Heipieper H.J., Isken S., Saliola M.: Ethanol tolerance and membrane fatty acid adaptation inadh multiple and null mutants ofKluyveromyces lactis.Res.Microbiol.151, 777–784 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Jahnke L., Klein H.P.: Oxygen requirement for formation and activity of the squalene epoxidase inSaccharomyces cerevisiae.J.Bacteriol.155, 488–492 (1983).

    PubMed  CAS  Google Scholar 

  • Janssen M.J.F.W., Koorengevel M.C., de Kruijff B., de Kroon A.I.P.M.: Transbilayer movement of phosphatidylcholine in the mitochondrial outer membrane ofSaccharomyces cerevisiae is rapid and bidirectional.Biochim.Biophys.Acta1421, 64–76 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Janssen M.J.F.W., Koorengevel M.C., de Kruijff B., de Kroon A.I.P.M.: The phosphatidylcholine to phosphatidylethanolamine ratio ofSaccharomyces cerevisiae varies with the growth phase.Yeast16, 641–650 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Khaware R.K., Koul A., Prasad R.: High membrane fluidity is related to NaCl stress inCandida membranaefaciens.Biochem.Mol. Biol.Internat.35, 875–880 (1995).

    CAS  Google Scholar 

  • Krasowska A., Chmielewska L., Gapa D., Prescha A., Vachová L., Sigler K.: Viability and formation of conjugated dienes in plasma membrane lipids ofSaccharomyces cerevistae, Schizosaccharomyces pombe, Rhodotorula glutinis andCandida albicans exposed to hydrophilic, amphiphilic and hydrophobic pro-oxidants.Folia Microbiol.47, 145–151 (2002).

    Article  CAS  Google Scholar 

  • Laemmli U.K.: Cleavage of structural protein during the assembly of the head of the bacteriophage T4.Nature227, 680–685 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Löffler J., Einsele H., Hebart H., Scumacher U., Hrastnik C., Daum G.: Phospholipid and sterol analysis of plasma membranes of azole-resistantCandida albicans strains.FEMS Microbiol.Lett.185, 59–63 (2000).

    Article  PubMed  Google Scholar 

  • Marx U., Polakowski T., Pomorski T., Lang C., Nelson N., Herrmann A.: Rapid transbilayer movement of fluorescent phospholipid analogues in the plasma membrane of endocytosis-deficient yeast cells does not require the Drs2 protein.Eur.J.Biochem.263, 254–263 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Mishra P., Prasad R.: Role of phospholipid head groups in ethanol tolerance ofSaccharomyces cerevisiae.J.Gen.Microbiol.134, 3205–3211 (1988).

    PubMed  CAS  Google Scholar 

  • Mishra P., Prasad R.: Relationship between ethanol tolerance and fatty acyl composition ofSaccharomyces cerevisiae.Appl.Environ. Microbiol.30, 294–298 (1989).

    CAS  Google Scholar 

  • Mizoguhi H.: Acquisition of ethanol tolerance bySaccharomyces cerevisiae in the sake brewing process and the tolerance determinants.Seibutsu-Kogaku76, 122–130 (1998).

    Google Scholar 

  • Mizoguchi H., Hara S.: Ethanol-induced alterations in lipid composition ofSaccharomyces cerevisiae in the presence of exogenous fatty acids.J.Ferment.Bioeng.83, 12–16 (1997).

    Article  CAS  Google Scholar 

  • Murakami Y., Yokoigawa K., Kawai F., Kawai H.: Lipid composition of commercial baker’s yeasts having different freeze-tolerance in frozen dough.Biosci.Biotech.Biochem.60, 1874–1876 (1996).

    Article  CAS  Google Scholar 

  • O’Connor-Cox E.S.C., Lodolo E.J., Axcell B.C.: Mitochondrial relevance to yeast fermentative performance: a review.J.Inst.Brew.102, 19–25 (1996).

    CAS  Google Scholar 

  • Paltauf F., Kohlwein S., Henry S.A.: Regulation and compartmentalization of lipid synthesis in yeast, pp. 415–500 inThe Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae:Gene Expression. Cold Spring Harbor Laberatory Press, New York 1992.

    Google Scholar 

  • Patton J.L., Lester R.L.: The phosphoinositol sphingolipids ofSaccharomyces cerevisiae are highly localized in the plasma membrane.J.Bacteriol.173, 3101–3108 (1991).

    PubMed  CAS  Google Scholar 

  • Pichler H., Gaigg B., Hrastnik C., Achleitner G., Kohlwein S.D., Zellnig G., Perktold A., Daum G.: A subfraction of the yeast endoplasmic reticulum associates with the plasma membrane and has a high capacity to synthesize lipids.Eur.J.Biochem.268, 2351–2361 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Piper P.W.: The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap.FEMS Microbiol. Lett.134, 121–127 (1995).

    Article  PubMed  CAS  Google Scholar 

  • van den Rest M.E., Kamminga A.H., Nakano A., Anraku Y., Poolman B., Konings W.N.: The plasma membrane ofSaccharomyces cerevisiae: structure, function, and biogenesis.Microbiol.Rev.59, 304–322 (1995).

    PubMed  Google Scholar 

  • Rupčić J., Blagović B., Maric V.: Cell lipids of theCandida lipolytica yeast grown on methanol.J.Chromatogr. A755, 75–80 (1996).

    Article  PubMed  Google Scholar 

  • Rupčić J., Mlsarić M., Rupčić J., Mesaric M., Maric V.: The influence of carbon source on the level and composition of ceramides of theCandida lipolytica yeast.Appl.Microbiol.Biotechnol.50, 583–588 (1998).

    Article  PubMed  Google Scholar 

  • Šajbidor J.: Effect of some environmental factors on the content and composition of microbial membrane lipids.Crit.Rev.Biotechnol.17, 87–103 (1997).

    Article  PubMed  Google Scholar 

  • Šajbidor J., Grego J.: Fatty acid alterations inSaccharomyces cerevisiae exposed to ethanol stress.FEMS Microbiol.Lett.93, 13–16 (1992).

    Article  Google Scholar 

  • Šajbidor J., Ciesarova Z., Šmogrovičová D.: Influence of ethanol on the lipid content and fatty acid composition ofSaccharomyces cerevisiae.Folia Microbiol.40, 508–510 (1995).

    Article  Google Scholar 

  • Schneiter R., Kohlwein S.D.: Organelle structure, function, and inheritance in yeast: a role for fatty acid synthesis?Cell88, 431–434 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Schneiter R., Brügger B., Sandhoff R., Zellnig G., Leber A., Lampl M., Athenstaedt, Hrastnik C., Eder S., Daum G., Paltauf F., Wieland F.T., Kohlwein S.D.: Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species and route to the plasma membrane.J.Cell Biol.146, 741–754 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Sorger D., Daum G.: Triacylglycerol biosynthesis in yeast.Appl.Microbiol.Biotechnol.61, 289–299 (2003).

    PubMed  CAS  Google Scholar 

  • Suutari M., Ljukkonen K., Laakso S.: Temperature adaptation in yeasts: the role of fatty acids.J.Gen.Microbiol.136, 1469–1474 (1990).

    PubMed  CAS  Google Scholar 

  • Tuller G., Nemec T., Hrastnik C., Daum G.: Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources.Yeast15, 1555–1564 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Vorbeck M.L., Mattick L.R., Lee F.A., Pederson C.S.: Preparation of methyl esters of fatty acids for gas-lipid chromatography.Anal.Chem.33, 1512–1514 (1961).

    Article  CAS  Google Scholar 

  • Zinser E., Daum G.: Isolation and biochemical characterization of organelles from the yeastSaccharomyces cerevisiae.Yeast11, 493–536 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Zinser E., Sperka-Gottlieb C.D.M., Fasch E.-V., Kohlwein S.D., Paltauf F., Daum G.: Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryoteSaccharomyces cerevisiae.J.Bacteriol.173, 2026–2034 (1991).

    PubMed  CAS  Google Scholar 

  • Zinser E., Paltauf F., Daum G.: Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism.J.Bacteriol.175, 2853–2858 (1993).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Blagović.

Additional information

This work was supported by theCroatian Ministry of Science and Technology (project 4-07-012) and by the grant ofAustrian CEEPUS-Office.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blagović, B., Rupčić, J., Mesarić, M. et al. Lipid analysis of the plasma membrane and mitochondria of brewer’s yeast. Folia Microbiol 50, 24–30 (2005). https://doi.org/10.1007/BF02931290

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931290

Keywords

Navigation