Skip to main content
Log in

Saccharification of foodwastes using cellulolytic and amylolytic enzymes fromTrichoderma harzianum FJ1 and its kinetics

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The study was targeted to saccharify foodwastes with the cellulolytic and amylolytic enzymes obtained from culture supernatant ofTrichoderma harzianum FJ1 and analyze the kinetics of the saccharification in order to enlarge the utilization in industrial application.T. harzianum FJ1 highly produced various cellulolytic (filter paperase 0.9, carboxymethyl cellulase 22.0, β-glucosidase 1.2, Avicelase 0.4, xylanase 30.8, as U/mL-supernatant) and amylolytic (α-amylase 5.6, β-amylase 3.1, glucoamylase 2.6, as U/mL-supernatant) enzymes. The 23–98 g/L of reducing sugars were obtained under various experimental conditions by changing FPase to between 0.2–0.6 U/mL and foodwastes between 5–20% (w/v), with fixed conditions at 50°C, pH 5.0, and 100 rpm for 24 h. As the enzymatic hydrolysis of foodwastes were performed in a heterogeneous solid-liquid reaction system, it was significantly influenced by enzyme and substrate concentrations used, where the pH and temperature were fixed at their experimental optima of 5.0 and 50°C, respectively. An empirical model was employed to simplify the kinetics of the saccharification reaction. The reducing sugars concentration (X, g/L) in the saccharification reaction was expressed by a power curve (X=K·t n) for the reaction time (t), where the coefficient,K andn, were related to functions of the enzymes concentrations (E) and foodwastes concentrations (S), as follow:K=10.894 Ln(E·S 2)-56.768,n=0.0608·(E/S)−0.2130. The kinetic developed to analyze the effective saccharification of foodwastes composed of complex organic compounds could adequately explain the cases under various saccharification conditions. The kinetics results would be available for reducing sugars production processes, with the reducing sugars obtained at a lower cost can be used as carbon and energy sources in various fermentation industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, S. G., D. Schulman, J. Lichwa, and M. J. Antal Jr (2001) A comparison between hot liquid water and steam fractionation of corn fiber.Ind. Eng. Chem. Res. 40: 2934–2941.

    Article  CAS  Google Scholar 

  2. Anuradha, R., A. K. Suresh, and K. V. Venkatesh (1999) Simultaneous saccharification and fermentation of starch to lactic acid.Process Biochem. 35: 367–375.

    Article  CAS  Google Scholar 

  3. Bhat, M. K. and S. Bhat (1997) Cellulose degrading enzymes and their potential industrial applications.Biotechnology Adv. 15: 583–620.

    Article  CAS  Google Scholar 

  4. Converse, A. O., H. Ooshima, and D. S. Burns (1990) Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose.Appl. Biochem. Biotechnol. 24/25: 67–73.

    Article  Google Scholar 

  5. Desai, S. G. and A. O. Converse (1997) Substrate reactivity as a function of the extent of reaction in the enzymatic hydrolysis of lignocellulose.Biotechnol. Bioeng. 56: 650–655.

    Article  CAS  Google Scholar 

  6. Gan, Q., S. J. Allen, and G. Taylor (2003) Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: An overview, an experimental study and mathematical modeling.Process Biochem. 38: 1003–1018.

    Article  CAS  Google Scholar 

  7. Gawande, P. V. and M. Y. Kamat (1998) Preparation, characterization and application ofAspergillus sp. xylanase immobilized on Eudragit S-100.J. Biotechnol. 66: 165–175.

    Article  CAS  Google Scholar 

  8. Ingesson, H., G. Zacchi, B. Yang, A. R. Esteghlalian, and J. N. Saddler (2001) The effect of shaking regime on the rate and extent of enzymatic hydrolysis of cellulose.J. Biotechnol. 88: 177–182.

    Article  CAS  Google Scholar 

  9. Jl, G. E., H. K. Han, S. W. Yun, and S. L. Rhim (1992) Isolation of amylolyticBifidobacterium sp. Int-57 and characterization of amylase.J. Microbiol. Biotechnol. 2: 85–91.

    Google Scholar 

  10. Kim, E. K., D. C. Irwin, L. P. Walker, and D. B. Wilson (1998) Factorial optimization of a six-cellulase mixture.Biotechnol. Bioeng. 58: 494–501.

    Article  CAS  Google Scholar 

  11. Kim, K. C., S. S. Yoo, Y. A. Oh, and S. J. Kim (2003) Isolation and characteristics ofTrichoderma harzianum FJ1 producing cellulases and xylanase.J. Microbiol Biotechnol. 12: 1–8.

    Google Scholar 

  12. Lee, H. K. and S. I. Hong (1987) Effect of inhibitor on enzymatic hydrolysis of cellulose.Hwahak Konghak 25: 109–114.

    CAS  Google Scholar 

  13. Lee, J. H., S. O. Lee, G. O. Lee, E. S. Seo, S. S. Chang, S. K. Yoo, D. W. Kim, D. F. Day, and D. Kim (2003) Transglycosylation reaction and raw starch hydrolysis by novel carbohydrolase fromLipomyces starkeyi.Biotechnol. Bioprocess Eng. 8: 106–111.

    Article  CAS  Google Scholar 

  14. Lin, J. Q., S. M. Lee, and Y. M. Koo (2001) Hydrolysis of paper mill sludge using an improved enzyme system.J. Microbiol. Biotechnol. 11: 362–368.

    CAS  Google Scholar 

  15. Mansfield, S. D., C. Mooney, and J. N. Saddler (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis.Biotechnol. Prog. 15: 804–816.

    Article  CAS  Google Scholar 

  16. Medve, J., J. Karlsson, D. Lee, and F. Tjerneld (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and Endoglucoanase II fromTrichoderma reesei: Adsorption, sugar production pattern, and synergism of the enzymes.Biotechnol. Bioeng. 59: 621–634.

    Article  CAS  Google Scholar 

  17. Min, S. Y., B. G. Kim, C. Lee, H. G. Hur, and J. H. Ahn (2002) Purification, characterization, and cDNA cloning of xylanase from fungusTrichoderma strain SY.J. Microbiol. Biotechnol. 12: 890–894.

    CAS  Google Scholar 

  18. Ooshima, H., D. S. Burns, and A. O. Converse (1990) Adsorption of cellulase fromTrichoderma reesei on cellulose and lignacious residue in wood pretreated by dilute sulfuric acid with explosive decompression.Biotechnol. Bioeng. 36: 446–452.

    Article  CAS  Google Scholar 

  19. Ooshima, H., M. Kurakake, J. Kato, and Y. Harano (1991) Enzymatic activity of cellulase adsorbed on cellulose and its change during hydrolysis.Appl. Biochem. Biotechnol. 31: 253–266.

    Article  CAS  Google Scholar 

  20. Park, E. Y., Y. Ikeda, and N. Okuda (2002) Empirical evaluation of cellulose on enzymatic hydrolysis of waste office paper.Biotechnol. Bioprocess Eng. 7: 268–274.

    Article  CAS  Google Scholar 

  21. Sethi, B., S. Mishra, and V. S. Bisaria (1998) Adsorption characteristics of cellulases from a constitutive mutant ofTrichoderma reesei.J. Ferment. Bioeng. 86: 233–235.

    Article  CAS  Google Scholar 

  22. Svetlana, V., R. M. Mark, and F. O. David (1997) Kinetic model for batch cellulase production byTrichoderma reesei RUT C30.J. Biotechnol. 54: 83–94.

    Article  Google Scholar 

  23. Sohn, C. B., M. H. Kim, J. S. Bae, and C. H. Kim (1992) β-Amylase system capable of hydrolyzing raw starch granules fromBacillus polymyxa No. 26 and bacterial identification.J. Microbiol. Biotechnol. 2: 183–188.

    CAS  Google Scholar 

  24. Son, C. J., S. Y. Chung, J. E. Lee, and S. J. Kim (2002) Isolation and cultivation characteristics ofAcetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures.J. Microbiol. Biotechnol. 12: 722–728.

    Google Scholar 

  25. Sun, Y., and J. Cheng (2002) Hydrolysis of lignocellulosic materials for ethanol production: A review.Bioresource Technol. 83: 1–11.

    Article  CAS  Google Scholar 

  26. Techapun, C., N. Poosaran, M. Watanabe, and K. Sasaki (2003) Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: A review.Process Biochem. 38: 1327–1340.

    Article  CAS  Google Scholar 

  27. Tengborg, C., M. Galbe, and G. zacchi (2001) Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood.Biotechnol. Prog. 17: 110–117.

    Article  CAS  Google Scholar 

  28. Thomas, M. W. and K. M. Bhat (1988) Methods for measuring cellulase activities.Method. Enzymol. 160: 87–112.

    Article  Google Scholar 

  29. Wan Mohtar, Y., M. I. Massadeh, and J. Kader (2000) Solid substrate and submerged culture fermentation of sugar cane bagasse for the production of cellulase and reducing sugars by a local isolate,Aspergillus terreus SUK-1.J. Microbiol. Biotechnol. 10: 770–775.

    Google Scholar 

  30. Wu, J. and L. K. Ju (1998) Enhancing enzymatic saccharification of waste newsprint by surfactant addition.Biotechnol. Prog. 14: 649–652.

    Article  CAS  Google Scholar 

  31. Yoo, S. S., K. C. Kim, Y. A. Oh, S. Y. Chung, and S. J. Kim (2002) The high production of cellulolytic enzymes using cellulosic wastes by a fungus, strain FJ1,Kor. J. Microbiol. Biotechnol. 30: 172–176.

    CAS  Google Scholar 

  32. Zhang, S., D. E. Wolfgang, and D. B. Wilson (1999) Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis.Biotechnol. Bioeng. 66: 35–41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Jun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KC., Kim, SW., Kim, MJ. et al. Saccharification of foodwastes using cellulolytic and amylolytic enzymes fromTrichoderma harzianum FJ1 and its kinetics. Biotechnol. Bioprocess Eng. 10, 52–59 (2005). https://doi.org/10.1007/BF02931183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931183

Keywords

Navigation