Skip to main content
Log in

Statistical optimization of medium components for the production of xylanase byAspergillus niger KK2 in submerged cultivation

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Medium composition was optimized for the production of xylanase byAspergillus niger KK2 using statistical experimental designs. Corn steep liquor (CSL) and industrial yeast extract (IYE) were the most important factors affecting xylanase activity. The medium that produced the optimum conditions for the production of xylanase contained 3% rice straw, 1% wheat bran, 6.3% CSL, 0.15% IYE, and 0.5% KH2PO4. After 4 days of cultivation under optimized conditions in a 2.5-L stirred tank reactor the activity and productivity of xylanase were 620 IU/mL and 6,458 IU/L.h, respectively. The highest xylanase activity obtained using the optimized medium was 80% greater than the activity obtained using basal medium. The xylanase activity predicted by a polynomial model was 670 IU/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuhad, R. C. and A. Singh (1993) Lignocellulose biotechnology: current and future prospects.Crit. Rev. Biotechnol. 13: 151–172.

    Article  CAS  Google Scholar 

  2. Kulkarni, N., A. Shendye and M. Rao (1999) Molecular and biotechnological aspects of xylanases.FEMS Microbiol. Rev. 23: 411–456.

    Article  CAS  Google Scholar 

  3. Wong, K. K. Y., L. U. L. Tan and J. N. Saddler (1988) Multiplicity of β-1,4-xylanase in microorganisms: functions and applications.Microbiol. Rev. 52: 305–317.

    CAS  Google Scholar 

  4. Haltrich, D., B. Nidetzky, K. D. Kulbe, W. Steiner, and S. Zupancic (1996) Production of fungal xylanascs.Biores. Technol. 58: 137–161.

    Article  CAS  Google Scholar 

  5. Uma Maheswari, M. and T. S. Chandra (2000) Production and potential applications of a xylanase from a new strain ofStreptomyces cuspidosporus.World J. Microbiol. Biotechnol. 16: 257–263.

    Article  Google Scholar 

  6. Jiang, Z., X. Li, S. Yang, L. Li, and S. Tan (2005) Improvement of the breadmaking quality of wheat flour by the hyperthermophilic xylanase B fromThermotogamaritime.Food Res. Int. 38: 37–43.

    Article  CAS  Google Scholar 

  7. Beg, Q. K., M. Kapoor, L. Mahajan and G. S. Hoondal (2001) Microbial xylanases and their industrial applications: a review.Appl. Microbiol. Biotechnol. 56: 326–338.

    Article  CAS  Google Scholar 

  8. Yin, Y.-L., S. K. Baidoo, H. Schulze and P. H. Simmins (2001) Effects of supplementing diets containing hulless barley varieties having different levels of non-starch polysaccharides with β-glucanase and xylanase on the physiological status of the gastrointestinal tract and nutrient digestibility of weaned pigs.Livest. Prod. Sci. 71: 97–107.

    Article  Google Scholar 

  9. Zyla, K., D. Gogol, J. Koreleski, S. Świątkiewicz, and D. R. Ledoux (1999) Simultaneous application of phytase and xylanases to broiler feeds based on wheat: feeding experiment with growing broilers.J. Sci. Food Agric. 79: 1841–1848.

    Article  CAS  Google Scholar 

  10. Viikari, L., A. Kantelinen, J. Sundquist, and M. Linko (1994) Xylanases in bleaching: from an idea to the industry.FEMS Microbiol. Rev. 13: 335–350.

    Article  CAS  Google Scholar 

  11. Bajpai, P. (1999) Application of enzymes in the pulp and paper industry.Biotechnol. Prog. 15: 147–157.

    Article  CAS  Google Scholar 

  12. Shi, F., Z. Xu, and P. Cen (2006) Optimization of γ-polyglutamic acid production byBacillus subtilis ZIU-7 using a surface-response methodology.Biotechnol. Bioprocess Eng. 11: 251–257.

    Article  CAS  Google Scholar 

  13. Omar, R., M. A. Abdullah, M. A. Hasan, M. Marziah, and M. K. Siti Mazlina (2005) Optimization and elucidation of interactions between ammonium, nitrate and phosphate inCentella asiatica cell culture using response surface methodology.Biotechnol. Bioprocess Eng. 10: 192–197.

    Article  CAS  Google Scholar 

  14. Ghanem, N. B., H. H. Yusef and H. K. Mahrouse (2000) Production ofAspergillus terreus xylanase in solid-state cultures: application of the Plackett-Burman experimental design to evaluate nutritional requirements.Bioresour. Technol. 73: 113–121.

    Article  CAS  Google Scholar 

  15. Kang, S. W., E. H. Ko, J. S. Lee and S. W. Kim (1999) Over-production of β-glucosidase byAspergillus niger mutant from lignocellulosic biomass.Biotechnol. Lett. 21: 647–650.

    Article  CAS  Google Scholar 

  16. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  17. Park, Y. S., S. W. Kang, J. S. Lee, S. I. Hong and S. W. Kim (2002) Xylanase production in solid state fermentation byAspergillus niger mutant using statistical experimental designs.Appl. Microbiol. Biotechnol. 58: 761–766.

    Article  CAS  Google Scholar 

  18. Lim, J. S., M. C. Park, J. H. Lee, S. W. Park and S. W. Kim (2005) Optimization of culture medium and conditions for Nco-fructooligosaccharides production byPenicillium citrinum.Eur. Food Res. Technol. 221: 639–644.

    Article  CAS  Google Scholar 

  19. Shah, A. R. and D. Madamwar (2005) Xylanase production by a newly isolatedAspergillus foetidus strain and its characterization.Process Biochem. 40: 1763–1771.

    Article  CAS  Google Scholar 

  20. Lenartovicz, V., C. G. M. D. Souza, F. G. Moreira, and R. M. Peralta (2002) Temperature effect in the production of multiple xylanases byAspergillus fumigatus.J. Basic Microbiol. 6: 388–395.

    Article  Google Scholar 

  21. Biswas, S. R., S. C. Jana, A. K. Mishra and G. Nanda (1990) Production, purification, and characterization of xylanase from a hyperxylanolytic mutant ofAspergillus ochraceus.Biotechnol. Bioeng. 35: 244–251.

    Article  CAS  Google Scholar 

  22. Taneja, K., S. Gupta and R. C. Kuhad (2002) Properties and application of a partially purified alkaline xylanase from an alkalophilic fungusAspergillus nidulans KK-99.Bioresour. Technol. 85: 39–42.

    Article  CAS  Google Scholar 

  23. Gomes, I., J. Gomes, W. Steiner and H. Esterbauer (1992) Production of cellulase and xylanase by a wild strain ofTrichoderma viride Appl. Microbiol. Biotechnol. 36: 701–707.

    Article  CAS  Google Scholar 

  24. Christakopoulos, P., W. Nerinckx, D. Kekos, B. Macris, and M. Claeyssens (1996) Purification and characterization of two low molecular mass alkaline xylanases fromFusarium oxysporum F3.J. Biotechnol. 51: 181–189.

    Article  CAS  Google Scholar 

  25. Adsul, M. G., J. E. Ghule, R. Singh, H. Shaikh, K. B. Bastawde, D. V. Gokhale and A. J. Varma (2004) Polysaccharides from bagasse: applications in cellulase and xylanase production.Carbohydr. Polym. 57: 67–72.

    Article  CAS  Google Scholar 

  26. Kango, N., S. C. Agrawal and P. C. Jain (2003) Production of xylanase byEmericella nidulans NK-62 on lowvalue lignocellulosic substrates.World J. Microbiol. Biotechnol. 19: 691–694.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Wook Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, B.J., Park, Y.S., Kang, S.W. et al. Statistical optimization of medium components for the production of xylanase byAspergillus niger KK2 in submerged cultivation. Biotechnol. Bioprocess Eng. 12, 302–307 (2007). https://doi.org/10.1007/BF02931108

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931108

Keywords

Navigation