Skip to main content
Log in

Predictive modeling of whole-cell bioactivity retention data in the presence of organic compounds

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The retention of whole-cell bioactivity is essential to the biocatalysis in reaction mixture containing organic compounds for the preparation of products in the pharmaceutical fine chemicals and food industries. A Quantitative Structure-Activity Relationship (QSAR) toxicity model for determination of whole-cell bioactivity was developed on the basis of receptor theory. And the glycolysis activity retention of baker's yeast in the presence of organic compounds was investigated in this study. Based on the fitting of the QSAR model to experimental data obtained in this study and in previous literatures, the regression analysis indicated that calculated values with this model were consistent with experimental data. Comparison of experimental data to the modeled curves suggests good predictive capabilities of the model for determination of whole-cell bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cruz, A., P. Fernandes, J. M. S. Cabral, and H. M. Pinheiro (2001) Whole-cell bioconversion of β-sitosterol in aqueous-organie two-phase systems.J. Mol. Catal. B 11: 579–585.

    Article  CAS  Google Scholar 

  2. Cruz, A., P. Fernandes, J. M. S. Cabral, and H. M. Pinheiro (2004) Solvent partitioning and whole-cell sitosterol bioconversion activity in aqueous-organic twophase systems.Enzyme Microb. Technol. 34: 342–353.

    Article  CAS  Google Scholar 

  3. León, R., P. Fernandes, H. M. Pinheiro, and J. M. S. Cabral (1998): Whole-cell biocatalysis in organic media.Enzyme Microb. Technol. 23: 483–500.

    Article  Google Scholar 

  4. Luo, D. H., M. H. Zong, and J. H. Xu (2003) Biocatalytic synthesis of (−)-1-trimethylsilylethanol by asymmetric reduction of acetyltrimethylsilane with a new isolateRhohotorula sp. AS2.2241.J. Mol. Catal. B 24–25: 83–88.

    Article  Google Scholar 

  5. Park, O.-J., H. L. Holland, J. A. Khan, and E. N. Vulfson (2000) Production of flavour ketones in aqueousorganic two-phase systems by using free and microencapsulated fungal spores as biocatalysts.Enzyme Microb. Technol. 26: 235–242.

    Article  CAS  Google Scholar 

  6. Salter, G. J. and D. B. Kell (1995) Solvent selection for whole cell biotransformations in organic media.Crit. Rev. Biotechnol. 15: 139–177.

    Article  CAS  Google Scholar 

  7. Laane, C., S. Boeren, K. Vos, and C. Veeger (1987) Rules for optimization of biocatalysis in organic solvents.Biotechnol. Bioeng. 30: 81–87.

    Article  CAS  Google Scholar 

  8. León, R., I. Garbayo, R. Hernández, J. Vigara, and C. Vilchez (2001) Organic solvent toxicity in photoautotrophic unicellular microorganisms.Enzyme Microb. Technol. 29: 173–180.

    Article  Google Scholar 

  9. Tong, Y. P., M. Hirata, H. Takanashi, T. Hano, M. Matsumoto, and S. Miura (1998) Solvent screening for production of lactic acid by extractive fermentation.Sep. Sci. Technol. 33: 1439–1453.

    Article  CAS  Google Scholar 

  10. Vermuë, M., J. Sikkema, A. Verheul, R. Bakker, and J. Tramper (1993) Toxicity of homologous series of organic solvents for the Gram-positive bacteriaArthrobacter andNocardia sp. and the Gram-negative bacteiraAcinetobacter andPseudomonas sp.Biotechnol. Bioeng. 42: 747–758.

    Article  Google Scholar 

  11. Cruz, A., P. Fernandes, J. M. S. Cabral, and H. M. Pinheiro (2002) Effect of phase composition on the whole-cell bionconversion of β-sitosterol in biphasic media.J. Mol. Catal. B 19–20: 371–375.

    Article  Google Scholar 

  12. Rajagopal, A. N. (1996) Growth of Gram-negative bacteria in the presence of organic solvents.Enzyme Microb. Technol. 19: 606–613.

    Article  CAS  Google Scholar 

  13. Cronin, M. T. and T. W. Schultz (1996) Structuretoxicity relationships for phenols toTetrahymena pyriformis.Chemosphere 32: 1453–1468.

    Article  CAS  Google Scholar 

  14. Kurup, A., R. Garg, D. J. Carini, and C. Hansch (2001) Comparative QSAR: Angiotensin II antagonists.Chem. Rev. 101: 2727–2750.

    Article  CAS  Google Scholar 

  15. Wang, X. D., C. S. Yin, and L. S. Wang (2002) Structure-activity relationships and response-surface analysis of nitroaromatics toxicity to the yeast (Saccharomyces cerevisiae).Chemosphere 46: 1045–1051.

    Article  CAS  Google Scholar 

  16. Wang, L. S. and S. K. Han (1997)Molecular Structure. Property and Activity. Chemical Engineering Press, Beijing, China.

    Google Scholar 

  17. Hansch, C. (1973)Structure-activity Relationships, Pergmon Press Inc., Elmsford, NY, USA.

    Google Scholar 

  18. Wang, L. S. and S. K. Han (1993)Quantitative Structure-Activity Relationships of Organic Compounds, China Environment Science Press, Beijing, China.

    Google Scholar 

  19. Osborne, S. J., J. Leaver, M. K. Turner, and P. Dunnill (1990) Correlation of biocatalytic activity in an organicaqueous two-liquid phase system with solvent concentration in the cell membrane.Enzyme Microb. Technol. 12: 281–291.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanjing Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Q., Yao, S. Predictive modeling of whole-cell bioactivity retention data in the presence of organic compounds. Biotechnol. Bioprocess Eng. 12, 228–234 (2007). https://doi.org/10.1007/BF02931097

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931097

Keywords

Navigation